
Digital Asset Management

via

Distributed Ledgers

Dimitris Karakostas

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

The University of Edinburgh

2021

“One must imagine Sisyphus happy.”

Albert Camus

i

Abstract

Distributed ledgers rose to prominence with the advent of Bitcoin, the first provably

secure protocol to solve consensus in an open-participation setting. Following, active

research and engineering efforts have proposed a multitude of applications and alter-

native designs, the most prominent being Proof-of-Stake (PoS). This thesis expands the

scope of secure and efficient asset management over a distributed ledger around three

axes: i) cryptography; ii) distributed systems; iii) game theory and economics.

First, we analyze the security of various wallets. We start with a formal model of

hardware wallets, followed by an analytical framework of PoS wallets, each outlining

the unique properties of Proof-of-Work (PoW) and PoS respectively. The latter also

provides a rigorous design to form collaborative participating entities, called stake pools.

We then propose Conclave, a stake pool design which enables a group of parties to

participate in a PoS system in a collaborative manner, without a central operator.

Second, we focus on efficiency. Decentralized systems are aimed at thousands of

users across the globe, so a rigorous design for minimizing memory and storage con-

sumption is a prerequisite for scalability. To that end, we frame ledger maintenance as

an optimization problem and design a multi-tier framework for designing wallets which

ensure that updates increase the ledger’s global state only to a minimal extent, while

preserving the security guarantees outlined in the security analysis.

Third, we explore incentive-compatibility and analyze blockchain systems from a

micro and a macroeconomic perspective. We enrich our cryptographic and systems’

results by analyzing the incentives of collective pools and designing a state efficient Bit-

coin fee function. We then analyze the Nash dynamics of distributed ledgers, introduc-

ing a formal model that evaluates whether rational, utility-maximizing participants are

disincentivized from exhibiting undesirable infractions, and highlighting the differences

between PoW and PoS-based ledgers, both in a standalone setting and under external

parameters, like market price fluctuations. We conclude by introducing a macroeco-

nomic principle, cryptocurrency egalitarianism, and then describing two mechanisms

for enabling taxation in blockchain-based currency systems.

ii

Acknowledgements

First and foremost, this thesis owes its existence to my advisor, Prof. Aggelos Kiayias.

His calming presence, steady guidance, profound advices, and contagious passion for

the scientific process have been staples of my journey through academia. He allowed

me to work independently and on my preferred pace, putting trust in my abilities, always

offering opportunities to better myself and never making me feel pressured. For all these

and more, I am forever grateful.

Completing this thesis would have been impossible without the continuous discus-

sions and exchange of ideas with multiple people. My co-authors and collaborators

Nikos Karayannidis, Thomas Zacharias, Andriana Gkaniatsou, Myrto Arapinis, Chris-

tos Nasikas, and Kostis Karantias have been extremely helpful in tackling the questions

we faced and helping me learn in practice how science is conducted. I am also grate-

ful to Drs. Vesselin Velichkov and Arthur Gervais, for taking the time to review this

thesis, posing intriguing questions during the viva voce examination, and providing me

with constructive feedback. I consider myself lucky to have been member of a research

group alongside Markulf Kohlweiss, Vassilis Zikas, Michele Ciampi, Thomas Kerber,

Orfeas Stefanos Thyfronitis Litos, Giorgos Panagiotakos, Hendrik Waldner, Christian

Badertscher, Lamprini Georgiou, Misha Volkhov, Lorenzo Martinico, Muhammad Ishaq,

Yun Lu, Aydin Abadi, and Yiannis Tselekounis, who were daily companions in discus-

sions that, more often than not, culminated in undeniably entertaining arguments. I am

particularly thankful to IOHK, for funding my numerous conference travels all around

the globe, and Mirjam Wester, for helping me tackle the oh-so dreaded bureaucracy.

Finally, I feel the need to give special thanks to Mario Larangeira, who was a constant

collaborator for the duration of my thesis and never failed to lift my spirits, and Dionysis

Zindros, for teaching me the marvels of technology and motivating me by example.

To the extent that this thesis is a product of mine, I am a product of the relationships

with the people closest to me. My mom, dad, and sister have, simply put, shaped who

I am today more than any other people. Christos, Panagiotis, and Tea have been part

of my life for more years than not; in our relationship, lies my definition of friendship. I

was fortunate enough to have shared my adult life with friends in Thodoris, Konstantina,

Nikolas, Fenia, Christos, Thanos, Foteini, Georgia, and Dorothea, who always made my

living in Greece and abroad as relaxing and fun as I could hope for.

In culminating this journey, any attempt to compress in a few sentences what Mirella

means to my life is futile; all I can offer is a humble thank you.

iii

This work is licensed under theCreativeCommonsAttribution-Non-Commercial-Share-

Alike 4.0 International License; to view a copy of this license, you may visit https:
//creativecommons.org/licenses/by-nc-sa/4.0/. This license is in addition to

the copyright granted to the University of Edinburgh for the publication of this thesis,

and does not preclude granting additional licenses. The LATEX source files of this thesis

are public and are available at https://github.com/dimkarakostas/phd-thesis
under the same license as all parts authored by Dimitris Karakostas.

iv

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/dimkarakostas/phd-thesis

Declaration

I hereby declare this thesis was written by myself to an overwhelming degree. A mi-

nority of the writing was originally composed by co-authors, namely Aggelos Kiayias,

Mario Larangeira, Thomas Zacharias, Nikos Karayannidis, Andriana Gkaniatsou, Chris-

tos Nasikas, Dionysis Zindros, and Myrto Arapinis for joint research papers. Neither

this work, nor any part thereof, has been submitted for any other degree or professional

qualification.

Dimitris Karakostas

v

Lay Summary

Distributed ledgers have been hailed as the “next big thing” for more than a decade.

Bitcoin, which established the blockchain paradigm, paved the way for a technology

that touches on a multitude of interdisciplinary domains. However, many subsequent

blockchain systems have inherited various deficiencies of Bitcoin, most importantly in

terms of energy consumption, the number of computations and storage needed to

maintain the ledger, and the incentives offered to the ledger’s maintainers. This the-

sis uses tools of cryptography, computer security, distributed systems, and economics

to explore how users can participate in the maintenance of digital assets via distributed

ledgers in a secure, efficient, and sustainable manner.

vi

Table of Contents

1 Introduction 1

1.1 Motivation and Contributions . 6

1.2 Publications . 8

2 Background 10

2.1 Cryptographic Primitives . 11

2.1.1 Cryptographic Hash Functions 11

2.1.2 Digital Signatures . 12

2.1.3 The Universal Composability Framework 13

2.2 Distributed Ledgers . 14

2.2.1 Consensus . 14

2.2.2 Reliable Broadcast . 15

2.2.3 Distributed Ledger . 15

2.3 Bitcoin and Blockchains . 16

2.4 Literature Overview . 20

2.4.1 Bitcoin Formal Models . 20

2.4.2 Proof-of-Stake Protocols . 20

2.4.3 Blockchain Incentives . 21

3 Formalization of Hardware Wallets 22

3.1 Formal Model of Hardware Wallets 24

3.2 The Ideal Functionality . 30

3.3 The Real-World Hybrid Setting . 32

3.4 Security Analysis . 35

3.5 Product evaluation . 40

4 Account Management in Proof-of-Stake Ledgers 42

4.1 General Desiderata . 45

vii

4.2 Address Malleability . 47

4.3 The Core-Wallet Functionality . 54

4.4 The Generic Core-Wallet Protocol 58

4.5 Security Analysis . 58

4.5.1 Properties of the Generation Algorithms 58

4.5.2 Security in the Sink Malleable Setting 62

4.5.3 Security in the Fully Malleable Setting 68

4.5.4 Attacking the Malleable Protocol in the Non-Malleable Setting . 68

4.6 PoS Addresses: Construction and Recovery 70

4.6.1 Address Types and their Attributes 70

4.6.2 Malleable Addresses . 73

4.6.3 A Posteriori Malleable Addresses 74

4.6.4 Sink Malleable Addresses . 76

4.7 The Proof-of-Stake Wallet . 78

4.7.1 Payment . 78

4.7.2 Stake Pool Registration . 79

4.7.3 Delegation . 79

4.7.4 Protocol Participation . 81

4.7.5 Security in the Presence of Stake Pools 83

4.7.6 Modes of Execution . 85

4.8 Discussion . 86

5 Collective Stake Pools 88

5.1 Desiderata . 90

5.2 Execution Model . 91

5.2.1 Weighted Threshold Digital Signatures 92

5.2.2 Transactions, Blocks, and the Global Ledger 93

5.3 UC Weighted Threshold Signature . 95

5.4 The Collective Stake Pool . 95

5.4.1 Hybrid Protocol Execution . 97

5.4.2 Part 1: Stake Pool Management 97

5.4.3 Part 2: Participation in Consensus 99

5.5 Security Analysis . 104

5.6 Incentives Analysis . 109

viii

6 Efficient Global State Management 111

6.1 A UTxO Model . 113

6.2 Transaction Optimization . 116

6.2.1 Transaction Logical Operators - Ledger State Algebra 117

6.2.2 A Transaction Optimization Framework 119

6.2.3 Transaction Optimization Techniques 120

6.2.4 The Transaction Optimization Problem 124

6.3 State Efficiency in Bitcoin . 127

6.3.1 A State Efficient Bitcoin . 130

7 Blockchain Nash Dynamics 132

7.1 The Setting . 136

7.1.1 Network Model . 136

7.1.2 Approximate Nash Equilibrium 137

7.2 Compliance Model . 137

7.2.1 Basic Notions . 138

7.2.2 Compliant Protocols . 139

7.3 Blockchain Protocols . 141

7.3.1 The Setting . 141

7.3.2 Utility: Rewards and Costs . 143

7.4 Fair Rewards . 144

7.5 Block-Proportional Rewards . 149

7.5.1 Bitcoin . 150

7.5.2 Proof-of-Stake . 155

7.6 Externalities . 161

7.6.1 Utility under Externalities . 161

7.6.2 Compliance under Externalities 163

7.6.3 Attacks and Market Response 165

7.6.4 Penalties . 167

8 Macroeconomic Principles 171

8.1 Cryptocurrency Egalitarianism . 171

8.1.1 PoW vs. PoS . 173

8.1.2 A Formal Model of Crypto-Egalitarianism 175

8.1.3 Discussion . 178

8.2 Tax Applications of Programmable Money 179

ix

8.2.1 Desiderata . 180

8.2.2 Tax Auditable Distributed Ledger 181

8.2.3 A Tax-Auditing Extension for Provisions 183

9 Conclusion 187

Bibliography 190

x

Chapter 1

Introduction

Atop Castle Rock, a land which has been occupied by humans since the Iron Age, stands

Edinburgh’s castle. The most famous attraction in a city full of those, the castle used to

serve as the royal residence and repository of Scotland’s official documents, since as

early as the High Middle Ages. Initially, it comprised of only a fortified keep. This inner

sanctum, a small and square stone building, was the place where, at each point in time,

the ruler decided the fates of Scotland and its people. Centuries passed and towers were

added, houses were constructed, extra lines of fortification were built. The confines of

the castle now housed the king’s advisors, that is the people who had gained his trust

and helped him rule the land. Outside the castle’s gates, a society formed, as potters

supplied the castle with ceramics and stoneware, masons built or restored walls and

roads, peasants and merchants travelled from across the land to trade in food and other

products. These people lived on the periphery of the castle and were allowed to enter

its premises by permission only, either from the king or his closed circle of confidants.

Eventually, the castle, both as a physical space and an idea, became too limited for

the modern times. With the degradation of feudalism and the industrial revolution, the

castle was no longer the fortified home of the ruler. More and more people gradually

started participating in the governing of the country. First, the king was the lone ruler;

then, he presided an inner council of hand-picked members; following, this council com-

prised of various lords and members of the upper class. Starting from 1802 and the first

British general elections, a few thousand aristocrats would elect a government. This

was followed by granting voting rights to all male home owners and, eventually, univer-

sal suffrage for all citizens. Nowadays, the Scottish Government is elected by an open,

fluid body of people, consisting of all residents of Scotland aged 16 and above.1

1The above timeline should be perceived more as an allegory for the paragraphs to follow, rather than

1

Chapter 1. Introduction 2

From a Digital Fortress to a Brave NewWorld

In the course of human history, many devices vie for the title of “first computer”. The

abacuses of ancient Babylonia and Greece and the Antikythera mechanism are some

primitive examples, while Charles Babbage’s Analytical Engine is typically hailed as the

first mechanical computer. The first design of amodern computer was given by Alan Tur-

ing [Tur37], with two marvelous machines paving the way: ENIAC and the Manchester

Baby, the first Turing-complete and stored-program computers respectively.

In the 30-odd years following the publication of Turing’s pioneering work, comput-

ers became smaller, more efficient, and more versatile. A major breakthrough came in

the 1960s with the usage of direct-access storage, like magnetic disks, which resulted in

the introduction of databases. This new technology enabled a more flexible, shared, and

interactive storage and processing of information. Following, a rich body of literature

focused on designing database standards and applications, like the navigational and rela-

tional database management systems and the SQL. Nonetheless, a ubiquitous element

of this era was the centralized operation of database systems. From shared-time servers

to personal computers, the designs assumed a single entity with complete control on

data management. However, soon a need emerged to perform correctly in the pres-

ence of faults, be it benign, such as hardware failures, or malicious, such as bad actors

trying to undermine the system.

The work of Lamport, Shostak, and Pease during the early ’80s introduced the con-
sensus problem to the world [PSL80a, LSP82]. As the title of their seminal paper sug-

gests, their work considered a set of computers that should reach agreement, on the

content of the information shared and the operations performed, in the presence of

faults. To this day, the following beautiful analogy of the Byzantine generals, devised in

that initial work, remains the best way to describe the consensus problem.

Imagine a group of generals of the Byzantine army, who siege a city and must decide

whether to attack at a pre-defined time. Some generals might prefer to attack, others

may not. Crucially, all generals should agree on a common decision, for divided troops

are bound to be defeated; thus, splitting the forces is far worse than either attacking

or retreating in a coordinated manner. The decision is made via remote voting, as the

generals cannot meet in person. However, there is a caveat. Some generals may have

defected to the enemy, so they might vote for a suboptimal strategy or, more impor-

tantly, vote selectively. For example, if the group consists of 5 generals, 2 of which are

a scientific exploration of Scotland’s history and politics; for the latter, the reader may advise textbooks
and works specializing on the matter, such as [Mac19, Bam14].

Chapter 1. Introduction 3

in favor of attacking while 2 are against, the fifth — corrupted — general may send an

“attack” vote to the former and a “retreat” vote to the latter; as a result, the four —

honest — generals would split. Even worse, since the generals are physically separated

and deliver their votes via messengers, it is possible that some messages are delayed or

even fail to be delivered.

In distributed computing, processors take the place of generals and networks take

the place of messengers. The system’s designer defines a protocol Π such that, if a pro-

cessor 𝒫 that follows Π outputs a value 𝑥, then every other processor that follows Π
also outputs 𝑥. A well-known impossibility result showed that, if more than half of the

processors are faulty, no protocol can solve the consensus problem. Subsequently, var-

ious protocols were proposed as solutions, each achieving different complexity bounds

under various network assumptions [GK20b]. Nonetheless, all of these protocols were

federated, thus restricting how many and which parties could participate. Without such

restriction, it was unclear how an attacker could be prevented from mounting a Sybil

attack, i.e., create a multitude of fake identities to gain an artificial majority.

30 years later came Bitcoin [Nak08a], which introduced “Nakamoto consensus”.

The major achievement of Bitcoin is solving [GKL15] the consensus problem in a com-

pletely open manner, i.e., without any restriction on who can participate when. It

achieved this by combining two pre-existing elements, (a) a linked chain of data, (b) Proof-

of-Work (PoW), resulting in a protocol whose quality was higher than the sum of its

parts.

The former, which has since been dubbed a “blockchain”, is a special database, which

consists of an append-only log of data chunks (“blocks”). In this database, nothing gets

deleted, i.e., a party can only add information, and, at any point in time, each processor

outputs an ordered log of published data.

The latter (PoW) is a cryptographic mechanism, via which a party proves to others

that it has performed a certain amount of computational effort. Invented by Dwork and

Naor [DN93] and formalized (and christened) by Jakobsson and Juels [JJ99], PoW was

originally proposed as a deterrent against Denial-of-Service (DoS) attacks and email

spamming. However, Bitcoin’s designer(s) repurposed it to counter sybil attacks. In

the new setting, each unit of computational power is an individual party and, to gain a

majority (and break the system), an attacker should possess more computational power

than all honest participants combined.

With this new protocol an evolution had occurred, from centrally-controlled com-

puter systems to completely open ones, much like the evolution described in the begin-

Chapter 1. Introduction 4

ning of this chapter. Now, one could design an application that retains as high a degree

of decentralization as one could hope for. However, an issue still remained. PoW re-

quires from each party to repeatedly perform a simple task (see Section 2.3 below).

Still, simple as it is, each computation consumes some amount of energy. To perform

millions, trillions, or more such computations per second comes at great cost, that is

the consumption of significant amounts of energy. So, what kind of application could be

built on this new paradigm and why would people care to pay the price of the costly

PoW algorithm?

Freakonomics

To answer this question, Bitcoin’s designers turned to classical economics, particularly

the concept of utilitarianism. This notion came to prominence by Jeremy Bentham who,

in his classic “Introduction to the Principles of Morals and Legislation”, defined utility as

“that property in any object, whereby it tends to produce benefit, advantage, pleasure,

good, or happiness” [Ben70]. Based on this idea, late 19th century economists devised

the image of Homo Economicus [PSP+71], a being that consistently acts rationally and

optimally, in order to increase its self-centered utility. People, Bitcoin’s designers ar-

gued, are driven by the pursuit of wealth. Therefore, to convince them to participate

in this new system, they should be compensated. Consequently, the first application to

be built on this new paradigm was a financial one: the Bitcoin cryptocurrency (BTC).

Bitcoin is undoubtedly a product of its era. Although the real identity of Satoshi

Nakamoto, its creator(s), remains unknown to this day, we can safely assume that, by

2008, they were at least in their early 20’s. Therefore, they grew up in, and were nur-

tured by, the globalized, financial, neoliberal capitalism. The platform on which Bitcoin’s

design was initially published, an online cryptography mailing list [Nak08b], suggests that

Nakamoto were part of the discussion on Internet civil liberties and its culmination in the

“cypherpunk” movement [Gre12, Lev01, AAMMZ12, Man11]. Hence, individual liberty

against an oppressive state became the compass of Bitcoin’s existence [Gol16]: i) on

the computer science side, Bitcoin was designed as a global, censorship-resistant sys-

tem, that can withstand attacks from any single entity with less power than the aggregate

power of its participants; ii) on the economics side, it was based on the ideas of the Aus-

trian School and the ideal of the gold standard, arguing for deflation and algorithmically-

controlled, a-political money.

As a result, the novel blockchain-based paradigmwas used as the database of a finan-

Chapter 1. Introduction 5

cial system with the following characteristics. The blockchain acts as a log of monetary

transactions. The unit of transactions is a new currency, the Bitcoin (BTC). The parties

that maintain the blockchain are called “miners” (in a not at all subtle nod to the gold

standard). For each block that a miner 𝒫 adds to the blockchain, 𝒫 is rewarded with a

certain amount of newly-issued BTC. The total amount of BTC in circulation is capped,

converging over time to 21 million. To transact with BTC, the sender pays some fees,

which are awarded to the miner that includes the transaction in their created block.

Bitcoin’s economic design has various interesting implications. The first type of re-

wards, newly-issued coins, deteriorates significantly over time, thus giving a dispropor-

tionate advantage to early participants. Additionally, it incentivizes miners to keep pro-

ducing blocks, even if nobody uses it (as is typically the case with new systems). The

second type, transaction fees, incentivizes miners to include as many transactions as

possible to their blocks. However, Bitcoin restricts the size of each block to 1MB. This

bound creates a competitive market for space in each block, between miners (i.e., “sell-

ers” of the space) and users (i.e., “buyers”). Consequently, if adoption of the system

increases and more transactions are performed, users “compete” for the (limited) block

space, so the fees increase and the miners are compensated more generously. Finally, if

more people were to use the system for monetary transactions, that is if a Bitcoin-based

economy of goods developed, the upper-bound of 21 million would enforce deflation,

as each product would cost less in BTC (conversely, each BTC would be worth more).

As a result, the system encourages people to hoard BTC, rather than transact with them.

During the first 11 years of Bitcoin’s existence, these implications often manifested

in practice in spectacular fashion. Bitcoin was initially presented as a cheap method of

transacting, often compared to overseas wire transfers. Indeed, for the greater part of

this period, a single transaction’s fees averaged a few USD cents [Bit21a]. However,

during periods of intense use, when many users tried to transact as fast as possible, the

average fees increased to as much as $60. As Bitcoin gained fame (and notoriety), its

price increased, at times in clear bubble-like rate. However, even at the peak of its main-

stream adoption, as few as 2160 entities (represented by unique addresses on Bitcoin’s

ledger) controlled 42.17% of the total BTC in circulation [Bit21b], a level of wealth central-

ization unprecedented in real-world economies. Consequently, almost all of Bitcoin’s

usage thus far has been in: i) savings and financial speculation (due to its deflationary

nature), or ii) illegal trades (due to its censorship resistance) [Ger17].

More importantly, Bitcoin is quickly turning into an environmental disaster. As BTC’s

price increased, partially due to widespread and questionable speculation [GS20], more

Chapter 1. Introduction 6

people would join the (profitable) mining business. As more and more people started

mining, the network’s aggregate PoW computations, and the total energy consumed by

the system, increased. Since the end of 2017, when BTC’s price bubbled to thousands

of USD, Bitcoin’s energy consumption has reached ridiculous levels. In an era when

the planet is on fire [Kle20], the carbon footprint of Bitcoin is comparable to that of

the Republic of Serbia, the CO2 emissions of processing a single Bitcoin transaction are

equivalent to processing 1,808,913 VISA transactions, and the energy corresponding

to this single transaction could power a USA household for 58 days [Dig21].

1.1 Motivation and Contributions

Evidently, although the distributed ledger used by Bitcoin is amarvelous technical achieve-

ment, the application built on top of it is rather flawed. Specifically, as Bitcoin is a some-

what simple protocol, aimed at working on a basic level for its core application, i.e.,

transacting, there are various avenues of research on the usability, efficiency, and eco-

logical and economic sustainability of distributed ledger-based applications.

Regarding usability, Bitcoin users control their assets via a cryptographic key. Us-

ing this key, they can only perform limited actions, such as transferring assets between

addresses, possibly under some very basic conditions. Importantly, the ledger is im-

mutable; once a transaction is complete, it is impossible to revert it. As a result, if the

controlling key is compromised, the assets are at risk. This makes Bitcoin and cryp-

tocurrencies a prime target for criminals, as is evident by the — almost daily — reports

of thefts that are worth thousands of dollars.

Regarding efficiency, a decentralized system should be carefully designed to enable

hundreds or thousands of participants to quickly process data under reasonable hard-

ware requirements. Bitcoin requires of users andminers to store two data objects. First,

the log of transactions, an ever-increasing list of historical data. Second, the state of the

systems, i.e., a mapping of addresses and the amount of bitcoins each owns. As time

passes, both objects increase. Therefore, if this trend continues, the system is bound to

be unmaintainable without using specialized, expensive hardware.

From an ecological point of view, Bitcoin is clearly unsustainable. In the past years,

this has become common knowledge, with alternative, more sustainable designs being

proposed, of which Proof-of-Stake (PoS) is the most prominent. PoS is a variation of

PoWwhere, instead of computational power, users are identified by stake in the system,

i.e., the assets that they own. Consequently, the energy footprint of PoS-based ledgers

Chapter 1. Introduction 7

is minuscule, offering a rather appealing alternative to Bitcoin.

From an economic point of view, both in theory and in practice, Bitcoin has proven

unable to sustain a real-world, productive economy. Instead, as shown above, it has

been used mostly in gray areas of speculation and dubious transactions. A particularly

interesting question then is how distributed ledgers could be better utilized, by applica-

tions that solve real problems and which are managed in an open, democratic manner

by the whole of society, instead of a small group of insiders and early adopters.

Based on these principles, this thesis makes incremental steps in improving how

digital assets, which are maintained via a distributed ledger, are designed, managed, and

used. The contributions are split into the following main chapters, each based on one

of the research papers output during the composition of the thesis:

• Formalization of HardwareWallets: Chapter 3 analyzes hardware wallets,

i.e., hardware modules that offer state-of-the-art security in storing and managing

cryptocurrencies. We present a formal model of expressing the necessary prop-

erties of hardware wallets, which is then used to analyze a number of commercial

products, identifying, in some cases, potential hazards.

• Account Management in Proof-of-Stake Ledgers: Chapter 4 articulates

the necessary properties of managing assets on PoS-based ledgers. In doing so, it

first identifies a malleability attack on cryptocurrency addresses, which is applica-

ble against real-world deployed systems, and then proposes a formal model that

captures the security of Proof-of-Stake wallets, which enables participation in the

ledger, either as a user or a maintainer of the system.

• Collective Stake Pools: The model of Chapter 4 defines participation in the

consensusmechanism of a Proof-of-Stake ledger via stake pools, i.e., collaborative

entities of multiple parties. However, these pools are presumably operated by

a single party. Chapter 5 relaxes this centralization assumption by introducing

Conclave, a design that enables a group of parties to jointly manage a stake pool,

in a competitive and highly efficient manner.

• Efficient Global State Management: The transactions that are created by a

wallet are stored in a global state, which is shared across all participants. As such,

efficient state management is imperative, if the system is to scale to thousands

or millions of users. Chapter 6 introduces a framework for constructing such

efficient transactions and describes how to incentivize both users (e.g., operators

Chapter 1. Introduction 8

of hardware wallets, as in Chapter 3) and maintainers (e.g., stake pool operators,

as in Chapters 4 and 5) to avoid the unnecessary bloating of the shared state.

• Blockchain Nash Dynamics: Cryptographic treatment assumes that parties

act either faithfully or arbitrarily and (possibly) maliciously; to evaluate whether

it is in the parties’ best interest to follow a protocol, we turn to game theory.

Chapter 7 builds on the results of Chapter 6 and explores under which conditions

parties remain compliant, i.e., do not exhibit a well-defined problematic behavior,

even if slightly diverging from the prescribed protocol. We evaluate large families

of deployed protocols and offer both positive and negative results, which show-

case the differences between PoW and PoS, as well as the limits of system design

in the presence of external market factors.

• Macroeconomic Principles: Chapter 8 explores somemacroeconomic prop-

erties of blockchain-based financial systems. First, we show that wealth redistribu-

tion from large to small capital owners is impossible in anonymous decentralized

financial systems. Building on this result, we define crypto-egalitarianism, a metric

which identifies the rate at which wealthy investors accumulate capital and quanti-

fies the identified limitation, with the best possible scenario being a linear reward

rate with respect to the invested capital. Second, we consider how a taxation pol-

icy can be enforced in such environment, under such limitations. Although the first

and, till now, primary application of blockchains has been hosting decentralized fi-

nancial systems, an evolving line of research looks into integrating this technology

in traditional systems, to create centrally-controlled digital cash. We builds on

this idea by exploring how distributed ledgers can help solve a widespread prob-

lem in real-world economies, tax gaps. We contribute by presenting two ideas,

via which a tax authority can identify differences between the assets reported by

citizens and the actual assets these citizens own.

In addition, Chapter 2 reviews necessary background material and Chapter 9 offers

concluding remarks and ties together the thesis’s core results.

1.2 Publications

A large amount of thework presented in this thesis is based on the following co-authored

publications:

Chapter 1. Introduction 9

• “A Formal Treatment of Hardware Wallets” [AGKK19]

Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas,1 Aggelos Kiayias

23rd International Conference on Financial Cryptography and Data Security (FC)

2019

• “Account Management in Proof of Stake Ledgers” [KKL20]

Dimitris Karakostas,1 Aggelos Kiayias, Mario Larangeira

12th International Conference on Security in Communication Networks (SCN)

2020

• “Conclave: A Collective Stake Pool Protocol” [KKL21]

Dimitris Karakostas,1 Aggelos Kiayias, Mario Larangeira

26th European Symposium on Research in Computer Security (ESORICS) 2021

• “Efficient State Management in Distributed Ledgers” [KKK21a]

Dimitris Karakostas,1 Nikos Karayiannidis, Aggelos Kiayias

25th International Conference on Financial Cryptography and Data Security (FC)

2021

• “Blockchain Nash Dynamics and the Pursuit of Compliance” [KKZ22]

Dimitris Karakostas,1 Aggelos Kiayias, Thomas Zacharias

Unpublished manuscript

• “Cryptocurrency Egalitarianism: A Quantitative Approach” [KKNZ19]

Dimitris Karakostas,1 Aggelos Kiayias, Christos Nasikas, Dionysis Zindros

1st International Conference on Blockchain Economics, Security and Protocols

(Tokenomics) 2019

• “Short Paper: Filling the Tax Gap via Programmable Money” [KK21]

Dimitris Karakostas,1 Aggelos Kiayias

5th InternationalWorkshop onCryptocurrencies and Blockchain Technology (CBT)

2021

The following publication was also developed during the thesis’s preparation, but

does not form an integral part of it:

• “Securing Proof-of-Work Ledgers via Checkpointing” [KK20]

Dimitris Karakostas,1 Aggelos Kiayias

3rd IEEE International Conference on Blockchain andCryptocurrency (ICBC) 2021
1 Author names are ordered alphabetically.

Chapter 2

Background

Security is typically expressed via formal provable statements expressed through so-

called security games, i.e., time-limited interactions with an adversary. The adversary

is modelled as a set of algorithms which, depending on the generality of the security

argument, may be abstract or well-defined. In each game, an adversary has some win-

ning condition, e.g., outputting a forged signature. The goal of our security proofs is

to demonstrate that, for any adversary, the advantage in being successful, compared to

outputting a purely random value, is small. If the maximum of the advantage, over all

possible adversaries, is 0, then we enjoy perfect security. Otherwise, the advantage is

expressed with respect to the security parameter 𝜅. Specifically, security proofs typically
employ asymptotics, by demonstrating that the success probability of the adversary is

negligible1 in the security parameter, denoted by negl(𝜅).
In summary, the cryptographic treatment of computer systems is based on three

cornerstones [KL20]:

1. Clearly-articulated assumptions, which distill the limitations of a system. The proto-

cols covered in our work do not operate unconditionally, thus we need to identify

the restrictions imposed on the environment, within which all parties operate, and

the adversaries, against which our protocols are protected.

2. Formal statement definitions, which specify the desirable properties of our proto-

cols, under the aforementioned assumptions.

3. Rigorous proofs of security, which guarantee that the formal statements hold, as long

as the assumptions are satisfied. In this work, we consider generic adversaries,

1We say that a function 𝑓 is negligible in 𝜅 if, for every 𝑐,𝑑 in ℕ, there is a 𝜅0 ∈ ℕ such that, for all
𝜅 > 𝜅0 and 𝑥 ∈ {0,1}𝜅𝑑

, it holds that 𝑓(𝑥,𝜅) < 𝜅−𝑐.

10

Chapter 2. Background 11

instead of employing ad-hoc arguments, therefore the proofs are mathematical

arguments which typically employ only computational bounds.

In the upcoming sections, we overview the foundations upon which the main body

of this thesis is built, assuming a general computer science background on the reader’s

part. We first overview a list of core cryptographic primitives, whichwill serve as building

blocks inmany of our protocols. Following, we provide an overview of classic computing

problems, namely consensus and distributed ledgers, and their modern variations, i.e.,

blockchain-based distributed protocols. This section offers only a brief review of the

topics; for a full treatment, we refer to textbooks on: i) cryptography and computer

security [KL20, Gol07, Gol09]; ii) distributed systems [CDK02]; iii) blockchain-based

ledgers [NBF+16]; iv) game theory [NRTV07, SJ93, Rou16].

2.1 Cryptographic Primitives

Across the thesis we assume a peer-to-peer network, where parties use a gossip diffuse

functionality [GKL15], without the need of a fully-connected graph and point-to-point

connections. Consequently, when a party receives a message, they cannot know which

party the message originated from.

Synchronous Network. Under a synchronous network, a message produced by an

honest party at round 𝑟 is delivered as input to all other parties by at most round 𝑟 +𝑡,
where 𝑡 is a threshold known a priori to a protocol’s designer. In the simplest case,

when 𝑡 = 1, each protocol round simulates a message passing round, i.e., the maximum

time required to deliver a message at any computer in the world; in blockchain analyses,

the message passing round is typically equal to 10−20 seconds [GKL15, Woo14].

Adversary. The adversary 𝒜 is an algorithm that aims at breaking the security of the

protocol under review, i.e., violate one of its security properties. 𝒜 is adaptive, i.e., can

corrupt parties dynamically, and rushing, i.e., can decide its strategy after receiving, and

possibly delaying, the honest parties’ messages.

2.1.1 Cryptographic Hash Functions

Cryptographic hash functions, as in Damgård [Dam88], exhibit the properties outlined

in Definition 1.

Chapter 2. Background 12

Definition 1 (Hash Function). A cryptographic hash function H ∶ {0,1}∗ → {0,1}𝑙 is

a function that, for some 𝑙 which is the length of the hash values, presents the following

properties:

• Collision Resistance: Given ℎ ← {0,1}𝑙 it should be computationally infeasible for a

probabilistic polynomial algorithm to find a value 𝑥 such that ℎ = H(𝑥).

• Pre-image resistance: It should be computationally infeasible for a probabilistic polyno-

mial algorithm to find two values 𝑥,𝑦 where 𝑥 ≠ 𝑦 such that H(𝑥) = H(𝑦).

• Second pre-image resistance: Given a value 𝑥, it should be computationally infeasible

for a probabilistic polynomial algorithm to find a value 𝑦 ≠ 𝑥 such that H(𝑥) = H(𝑦).

2.1.2 Digital Signatures

A digital signature scheme Σ, as in Canetti [Can03] and Goldwasser et al. [GMR84], is a

triple of algorithms Σ = ⟨KeyGen,Verify,Sign⟩, as described in Definition 2. Following

Definition 3 describes a core property of signatures, which is resistance to Existential

Unforgeability under Adaptive Chosen Message Attacks (EUF-CMA).

Definition 2 (Digital Signature). For a security parameter 𝜅, a digital signature scheme Σ
is a tuple (KeyGen,Sign,Verify):

• KeyGen(1𝜅) → (vk,sk): a randomized algorithm that, given the security parameter

𝜅, outputs a pair of keys, the verification key vk and the 𝜅-bit long private key sk;

• Sign(𝑚,sk) → 𝜎: (possibly) randomized algorithm that, given a message 𝑚 and the

private key sk, outputs a signature 𝜎;

• Verify(𝑚,vk,𝜎) → {0,1}: a deterministic algorithm that, given a message 𝑚, a

public key vk, and a signature 𝜎 outputs 1 if a signature is valid w.r.t. message 𝑚 and

verification key vk (respectively 0 if the signature is invalid).

Definition 3 (EUFCMA). A digital signature scheme Σ is Existentially Unforgeable under

Adaptive Chosen Message Attacks (EUF-CMA) if it presents the following properties:

• Completeness: For any message 𝑚, it holds:

Pr[(vk,sk) ← KeyGen(1𝜅),𝜎 ← Sign(𝑚,sk) ∶ 0 ← Verify(𝑚,vk,𝜎)] ≤ negl

where all probabilities are computed over the random coins of the generation and sign

algorithms.

Chapter 2. Background 13

• Consistency: For any message 𝑚, the probability that two independent executions of

Verify(𝑚,vk,𝜎) for a key pair (vk,sk) ← KeyGen(1𝜅), output two different out-

comes is smaller than negl.

• Unforgeability: For any PPT algorithm 𝒜𝑓𝑜𝑟𝑔𝑒𝑟, which can query the signature oracle

Sign(⋅,sk) for signatures on a polynomial number of messages 𝑚𝑖, it holds:

Pr
⎡
⎢⎢
⎣

(vk,sk) ← KeyGen(1𝜅) ∶
(𝑚,𝜎) ← 𝒜Sign(⋅,sk)

𝑓𝑜𝑟𝑔𝑒 ∧
𝑚 ≠ 𝑚𝑖∧

Verify(𝑚,vk,𝜎) = 1]

⎤
⎥⎥
⎦

≤ negl(𝜅)

where all the probabilities are computed over the random coins of the generation algo-

rithm and the adversary.

2.1.3 The Universal Composability Framework

The Universal Composability (UC) Framework by Canetti [Can01] is a tool that en-

ables us to capture the security properties of a distributed protocol. As a preparation

for presenting the framework, consider two ensembles 𝑋 = {𝑋𝜅,𝑧}𝜅∈ℕ,𝑧∈{0,1}∗ and

𝑌 = {𝑌𝜅,𝑧}𝜅∈ℕ,𝑧∈{0,1}∗ of binary random variables. 𝑋 and 𝑌 are said to be computa-

tionally indistinguishable, denoted by 𝑋 ≈𝑐 𝑌 , if for all 𝑧 it holds that ∣ Pr[𝒟(𝑋𝜅,𝑧) =
1]−Pr[𝒟(𝑌𝜅,𝑧) = 1] ∣ is negligible in 𝜅, i.e., negl, for every probabilistically polynomial-

time (PPT) distinguishing algorithm 𝒟.

The main idea of security proofs under the UC framework relies on the compar-

ison between the execution of a concrete protocol, say 𝜋, and a security definition,

named the ideal functionality. These two executions are, respectively, the real world and

the ideal world. Both are controlled by an entity called the environment, denoted by 𝒵,

which can submit actions and observe outputs from the executions. The environment

controls the execution of 𝜋, through choosing the inputs of its participants, and also the

actions of the adversary 𝒜 in the real world. We note that our work is restricted on

executions where every party 𝒫 ∈ ℙ is activated on each time slot. 𝒵 also controls

the activation schedule and the inputs of each party. The adversary 𝒜 can read the

messages exchanged between the protocol players and even delay them, to a degree

that depends on the network model. Moreover, it is allowed to corrupt players per the

environment’s instructions, in which case the player’s secret state is compromised and

is available to the adversary.

Chapter 2. Background 14

More formally, every entity is modeled as a PPT Interactive Turing Machine (ITM),

and the real world and ideal executions are respectively represented by the ensembles:

REAL𝜋,𝒜,𝒵 = {REAL𝜋,𝒜,𝒵(𝜅,𝑧,𝑟)}𝜅∈ℕ,𝑧∈{0,1}∗

and

IDEALℱ,𝒮,𝒵 = {IDEALℱ,𝒮,𝒵(𝜅,𝑧,𝑟)}𝜅∈ℕ,𝑧∈{0,1}∗

and uniform randomly chosen value 𝑟. We useREAL𝜋,𝒜,𝒵(𝜅,𝑧,𝑟) to denote the output
of the environment 𝒵 in the real-world execution of a protocol 𝜋 and the adversary 𝒜
under security parameter 𝜅, input 𝑧 and randomness 𝑟. Analogously, we denote by

IDEALℱ,𝒮,𝒵(𝜅,𝑧,𝑟) the output of the environment in the ideal interaction between

the simulator 𝒮 and the ideal functionality ℱ under security parameter 𝜅, input 𝑧 and

randomness 𝑟. It is said that the protocol 𝜋 securely realizes the functionality ℱ when

the environment cannot distinguish between the two worlds, i.e., for every 𝒜 exists a

simulator 𝒮 such that for every PPT 𝒵 we have that REAL𝜋,𝒜,𝒵 ≈𝑐 IDEALℱ,𝒮,𝒵.

2.2 Distributed Ledgers

We now overview the problem of constructing a secure distributed ledger. Specifically,

starting from the problem of consensus, a fundamental problem of distributed com-

puting on which distributed ledgers are based, we provide formal definitions for the

problem space that blockchain protocols aim to solve.

2.2.1 Consensus

The consensus problem, introduced in the seminal work of Shostak, Pease, and Lam-

port [LSP82, PSL80a], is the setting where a set of parties, each with its own input, need

to reach agreement and output the same value. A protocol that solves the consen-

sus problem demonstrates three core properties [CDK02], namely termination, agree-

ment, and validity (Definition 4).

Definition 4 (Consensus). A consensus protocol Π, which is performed among 𝑛 parties

𝒫𝑖, each with input 𝑣𝑖, satisfies the following properties:

• Termination: eventually each correct process outputs a single value;

• Agreement: all correct processes output the same value;

Chapter 2. Background 15

• Validity: if all correct processes start Π with the same input 𝑣, then every correct

process outputs 𝑣.

2.2.2 Reliable Broadcast

A problem close, but not identical, to consensus is that of Reliable Broadcast (RBC),

which will prove useful in the construction of the collective pool of Chapter 5. Briefly,

a RBC protocol ensures that a message output by an honest party is eventually broad-

cast and output by all other honest parties. Definition 5 describes RBC, following the

formalization of [CJKR12, MR21].

Definition 5 (Reliable Broadcast). Let 𝒫𝑠 be a designated sender of its input 𝑏𝑖𝑛. A

Reliable Broadcast (RBC) protocol, which is performed among 𝑛 parties, satisfies the following

properties;

• Safety: i) Consistency: if two honest parties output values 𝑏,𝑏′ respectively, then 𝑏 =
𝑏′; ii) Integrity: if 𝒫𝑠 is honest, no honest party outputs a value 𝑏 ≠ 𝑏𝑖𝑛.

• Liveness: i) Validity: if 𝒫𝑠 is honest, then all honest parties output some value; ii) To-

tality: if an honest party commits a value, then all honest parties output some value.

2.2.3 Distributed Ledger

A ledger is an append-only list of ordered transactions: ℒ = [𝜏0,…,𝜏𝑗]. A distributed

ledger is a ledger that is maintained in a decentralized manner, i.e., by multiple parties

without a single central authority. Intuitively, a ledger can be seen as a repetitive execu-

tion of a consensus protocol, where the input is a transaction. As Definition 6 shows, a

distributed ledger is secure if all parties agree on the transaction ordering and the ledger

expands over time.

Definition 6 (Distributed Ledger). Let Π be a protocol that is run by 𝑛 parties; Π imple-

ments a secure distributed ledger if the following properties are satisfied:

• Safety: If two honest parties output [𝜏0,…,𝜏𝑗] and [𝜏 ′
0,…,𝜏 ′

𝑗] respectively, then ∀𝑖 ∈
[0,min(𝑗,𝑗′)] ∶ 𝜏𝑖 = 𝜏 ′

𝑖 .

• Liveness: If a transaction 𝜏 is provided as input to at least one honest party, eventually

all honest parties output a ledger containing 𝜏 .

Chapter 2. Background 16

2.3 Bitcoin and Blockchains

Blockchains are a special family of protocols that solve the distributed ledger problem.

Their name is derived from the mechanics of the underlying data structure. Specifically,

in blockchain systems, transactions are grouped in blocks. Each block ℬ contains an

Merkle Tree [Mer88] of (ordered) transactions, as well as a hash pointer to another

block. Each block points to exactly one other block, thus forming a tree of blocks. The

root of the tree is typically a global parameter, called the “genesis” block. Each branch

of the tree consists of a well-ordered chain of blocks 𝒞, thus implementing a distributed

ledger (cf. Section 2.2.3). Additionally, a block contains a timestamp and a nonce, which

is used during the Proof-of-Work computation (see below). Figure 2.1 depicts a simple

model of Bitcoin’s blocks.

Figure 2.1: Bitcoin’s blockchain data structure.

For the rest of this thesis, we will use the following notation:

• ℬ denotes a block;

• 𝒞 denotes a chain of blocks;

• 𝒞||ℬ denotes the concatenation of a chain and a block;

• head(𝒞) denotes the last block of a chain 𝒞, i.e., the block farthest from genesis

s.t. head(𝒞||ℬ) = ℬ;

• (≺) denotes the prefix operation between two chains; so, if 𝒞′ ≺ 𝒞, then there

exists a chain of blocks ℬ0||…||ℬ𝑗 such that 𝒞 = 𝒞′||ℬ0||…||ℬ𝑗;

• (\) denotes the difference of two chains, e.g., if 𝒞 = 𝒞′||𝒞″ then 𝒞″ = 𝒞\𝒞′;

Chapter 2. Background 17

• 𝒞⌈𝑘 denotes the chain obtained by removing the last 𝑘 blocks of chain 𝒞, i.e.,
𝒞\𝒞⌈𝑘 = 𝒞′ where |𝒞′| = 𝑘;

• |𝒞| denotes the length of chain 𝒞 in blocks;

• 𝒞[𝑘] denotes either the 𝑘-th block or the 𝑘-th transaction in 𝒞 (depending on the

context).

Bitcoin Backbone [GKL15, GKL17] and subsequently [KP15] distilled the properties

that a secure blockchain protocol must satisfy (Definition 7). Based on these properties

and Definition 6, Definition 8 describes the combined, high-level properties of persis-

tence and liveness for blockchain-based distributed ledgers.

Definition 7. Assume 𝑛 parties, each party 𝒫𝑖 locally holding a chain 𝒞𝑖 = [𝜏𝑖,0,…,𝜏𝑖,𝑗].
A secure blockchain protocol must satisfy the following properties:

• Common Prefix: For parameters 𝑘,𝑟0 ∈ ℕ, the chains𝒞1,𝒞2 held locally by the honest,

but not necessarily distinct, parties 𝒫1,𝒫2 at rounds 𝑟0 < 𝑟1 ≤ 𝑟2 respectively, satisfy:

𝒞⌈𝑘
1 ≺ 𝒞2.

• Chain Quality: For parameters 𝑙,𝜇 ∈ ℕ, any consecutive sequence of 𝑙 blocks, in a

chain held locally by any honest party at any point in time, comprises of at least 𝜇
blocks created by an honest party.

• Chain Growth: For parameters 𝑠, 𝑡 ∈ ℕ, if at round 𝑟 an honest party 𝒫𝑖’s chain is 𝒞𝑖,𝑟,

then, at round 𝑟 +𝑠, the chain 𝒞𝑖,𝑟+𝑠 locally held by 𝒫𝑖 satisfies |𝒞𝑖,𝑟+𝑠| ≥ 𝒞𝑖,𝑟 +𝑡.

Definition 8. Assume 𝑛 parties, each party 𝒫𝑖 locally holding a chain 𝒞𝑖 = [𝜏𝑖,0,…,𝜏𝑖,𝑗].
We call a transaction 𝜏 stable if, assuming that for some honest party 𝒫𝑖 and some

𝑘 ∈ ℕ it holds 𝒞𝑖[𝑘] = 𝜏 , then for every honest party 𝒫𝑙 it holds 𝒞𝑙[𝑘] = 𝜏 .
A blockchain-based distributed ledger protocol is secure, with parameters 𝑘,𝑢, if it satis-

fies the following properties:

• Persistence: For each party 𝒫𝑖, a transaction which is part of a block in a prefix chain

𝒞′
𝑖 ≺ 𝒞, such that |𝒞𝑖|− |𝒞′

𝑖| ≥ 𝑘, is stable.

• Liveness: A transaction which is provided as input to an honest party at round 𝑟 has

become stable by round 𝑟 +𝑢.

Themajor innovation of Bitcoin [Nak08a] was to use a blockchain to implement a se-

cure distributed ledger under open and dynamic participation [GKL15, GKL17, PSs17].

Chapter 2. Background 18

Up to that point, distributed ledger protocols assumed a known number of participating

parties; instead, Bitcoin allows parties to join or leave the protocol as needed. How-

ever, in such open-participation setting, Bitcoin faced two questions: i) how to identify

the party responsible for producing a new block at any stage of the protocol; ii) how to

prevent sybil attacks [Dou02]. Briefly, in a sybil attack an adversary creates a large num-

ber of pseudonymous identities to gain disproportionate power in a system and subvert

its security. Bitcoin answered both these questions with its Proof-of-Work, with other

blockchain protocols following suit with alternatives like Proof-of-Stake.

Proof-of-Work (PoW). The core idea behind PoW [DN93] is performing some

amount of computations and then, in order to participate in a protocol, publish a proof

of this “work” performed by the hardware. In cryptocurrencies like Bitcoin, the PoW

work is called “mining”. The mining hardware is provided with two constants, previd
and data, i.e., the id of the tip of the adopted blockchain and the data which need to

be appended to it. The mining device then brute-force searches for some string nonce,
such that H(previd||data||nonce) ≤ 𝑇 for some hash function H defined by the system.

𝑇 is a — relatively — small number, called the difficulty target, which is adjusted to

ensure a stable block production rate, although typically remains constant for periods

of consecutive blocks called epochs. For example, in Bitcoin, epochs are 2016 blocks

long [BMC+15], while each new block is produced approximately every 10 minutes.

Because the search for solutions is exhaustive, the expected number of solutions found

by a given miner is proportional to the number of evaluations of the hash function H
they can obtain in a given time frame.

Proof-of-Stake (PoS). PoW’s deficiencies, particularly its egregious environmen-

tal cost, have driven research towards alternative designs, most prominently Proof-of-

Stake (PoS). In PoS, a minter is selected in proportion to the stake they hold, which is

to say proportionally to the amount of assets they own. These assets are managed by

the distributed ledger and serve as both the system’s internal currency and consensus

participation tokens. There exist a number of flavors of this process. In one case, e.g.,

Ouroboros [KRDO17], all coins automatically participate in the leader election process.

In a second flavour, the stake has to opt-in to participate in the election by a special pro-

cess, such as purchasing a ticket or becoming a delegate of the stake of other users; this

is the case for cryptocurrencies like Decred [dec19] and EOS [Com18]. PoS systems are

almost energy-free, but often rely on complex cryptographic primitives, e.g., secureMul-

Chapter 2. Background 19

tiparty Computation [KRDO17], Byzantine Agreement [DPS19, GHM+17a, KJG+16],

or Verifiable Random Functions (VRFs) [DGKR18, GHM+17a].

Starting with Bitcoin, blockchain-based distributed ledgers are typically used for fi-

nancial applications. The ledger acts as a database which records the ownership of digital

assets at any point and the transactions, i.e., transfers of asset ownership, that are per-

formed between users. Each user interacts with the assets recorded on the ledger via

addresses.

An address 𝛼 is a string chosen from the set 𝔸 ⊆ {0,1}ℓ, where ℓ is the— protocol-

specific — address length parameter. At any point in time, the ledger records the assets

that each address owns. A user controls a single account, which may in turn control mul-

tiple addresses; therefore, a user participates in the ledger, via the account’s addresses,

in a pseudonymous manner.2 Intuitively, an address is akin to an IBAN, in traditional

bank accounts. Typically, each address is associated with a payment key pair (vk,sk),
where vk is the public and sk the private key. As explored in Chapter 4, an address

may be associated with additional data, such as a staking key or metadata. Additionally,

in contract systems like Ethereum, a smart contract may not be associated with a key

pair, but rather only with a piece of software. However, in all cases, addresses that are

maintained by users of the system are associated with at least one key pair, which is

used for receiving and issuing payments.

To transfer assets between addresses, a user creates a transaction 𝜏 . In the simplest

case, a transaction comprises of the following objects: i) 𝛼𝑠: the address of the sender,

i.e., the current owner of the assets; ii) 𝛼𝑟: the address of the receiver of the assets;

iii) 𝜃: the amount or set of assets which are transferred. Typically, the transaction is also

signed by the private key associated with 𝛼𝑠, such that the sender can prove ownership

of the assets. Optionally, the transaction may also contain additional information, such

as a number of fees, a change address (i.e., to receive surplus assets), or metadata (as

explored in Chapters 3 and 4). 𝜃 may be a simple number, if the exchanged assets are

fungible, or a set of individual asset identifiers, in the case of non-fungible assets.

Asset Fungibility. An asset is fungible if each unit is indistinguishable from the others;

in contrast, each unit of a non-fungible asset is identified by a unique identifier, which

can be used to track it and trace its history. For example, the US Dollar (USD) is a

fungible asset, as citizens transact in amounts of USD and each single unit of USD is

2The literature has also seen a number of fully anonymous blockchain protocols [BCG+14, MGGR13,
CGL+17, KKKZ19], but these are outside the scope of this thesis.

Chapter 2. Background 20

indistinguishable. However, USD bills or banknotes are non-fungible, since each bill is

identified by a unique serial number, which is often used to track forged or stolen assets.

In our work, a non-fungible asset is identified by a natural number 𝜃, while for fungible

assets we consider only amounts denoted by Θ.

2.4 Literature Overview

We now overview notable works that pertain to the entire scope of the thesis. Fol-

lowing, each individual chapter focuses on the body of literature related to its specific

research questions.

2.4.1 Bitcoin Formal Models

The importance of formal methods for analyzing Bitcoin is well understood, with ex-

isting literature showcasing different approaches. Garay et al. [GKL15, GKL17], after

extracting and analyzing the core Bitcoin blockchain protocol, presented a formal ab-

straction to prove that Bitcoin satisfies a set of security and quality properties. Pass

et al. [PSs17] analyzed the consistency and liveness properties of the consensus pro-

tocol in an asynchronous setting, proving Bitcoin secure assuming an upper bound on

the network delay. Badertscher et al. [BMTZ17] suggested a Universally Composable

treatment of the Bitcoin ledger, defining Bitcoin’s goals and proving that their model

is securely realized in the UC framework. Transactions, being a core part of Bitcoin,

have also attracted attention; notably, Atzei et al. [ABLZ18] proposed a formal model

of Bitcoin transactions, to prove security e.g., against double-spending attacks.

2.4.2 Proof-of-Stake Protocols

The cryptographic literature has seen a number of PoS protocols in the past years. A

family of such protocols, which was initiated with Ouroboros [KRDO17] and contin-

ued withOuroboros Praos [DGKR18], Ouroboros Genesis [BGK+18], andOuroboros

Crypsinous [KKKZ19], provides a wide range of threat model considerations, relevant

to PoS systems, and offers eventual guarantees of liveness and persistence, similar to

Bitcoin. Algorand [CGMV18, GHM+17b] is a protocol which employs Byzantine Agree-

ment to achieve the necessary properties of a PoS setting, as well as transaction finality

in (expected) constant time. Snow White [DPS19, PS17b] similarly uses the notion of

Chapter 2. Background 21

“robustly reconfigurable consensus”, which is specially designed to cope with the lack

of participation of users in the consensus protocol.

Real-world PoS implementations often opt for stake representation and delegation,

similar to our work in Chapter 4. Systems like Cardano [Car], EOS [Com18], and (to

some extent) Tezos [Goo14], employ different consensus protocols, but all enforce that

a (relatively small) subset of representatives is elected to participate. Decred [dec19]

takes a somewhat different approach, where stakeholders buy a ticket for participation,

akin to PoS with optional participation. However, these systems typically assume single

parties that act as delegates, either individually or as pool operators, a restriction that

Chapter 5 directly aims at relaxing.

2.4.3 Blockchain Incentives

The seminal work of Selfish Mining [ES14, SSZ16, KKKT16a] showed that honest be-

havior is not incentive-compatible. However, alternative reward sharing mechanisms

in the PoS setting may make it feasible to perform better in terms of incentive com-

patibility. For instance, Ouroboros [KRDO17] can be designed from the ground up to

be a Nash equilibrium under certain plausible conditions. The question of how to in-

centivize parties in PoS systems to form a desired number of stake pools was further

studied in [BKKS20]. The problem that these works study, and which we also explore

in Chapter 7, is designing the incentives of blockchain systems from the designer’s point

of view, so that participants do not deviate from the prescribed protocol. One related

question is how fair the protocol is to participants themselves, particularly to honest

participants. The Bitcoin Backbone and Selfish Mining works include attacks in which

an adversary can strategically the ledger’s performance, causing the number of blocks

and, in turn, the respective rewards, to be disproportionate to their contributed com-

putational power, thereby harming fairness towards honest participants. In the PoW

setting, Fruitchains [PS17a] proposes a protocol which solves this problem via the no-

tion of “fair” rewards, i.e., rewards in exact proportion to the computational power of

each party.

Chapter 3

Formalization of HardwareWallets

Bitcoin, being the most successful cryptocurrency, has been repeatedly attacked with

many users losing their funds. As wallets are the only way for a user to access their

funds, they are repeatedly targeted for attacks that aim to access the account’s keys or

redirect the payments, ranging from clipboard hijacking [Par16] andmalware [HDM+14]

to implementation bugs, e.g., the Parity hack in Ethereum [Alo17], and more specific at-

tacks, e.g., brain wallets [VBC+16]. In order to address such threats, different ways to

harden the wallet’s security have been proposed, with the most notable one being the

utilization of cryptographic hardware, i.e., hardware wallets. These specialized devices

currently dominate the market and, as demand grows, so does the number of com-

mercially available products. However, they are also arguably the least formally studied

part of cryptocurrency ecosystems, with their specifications and security goals remaining

unclear and understudied.

The module known as a hardware wallet is responsible for the account’s key man-

agement and the execution of the required cryptographic operations. The remaining

operations are completed by a dedicated software, either provided together with the

hardware or by a third party, with which the hardware communicates. However, in-

corporating expensive hardware as a wallet is bound to bring some security guarantees.

Currently, the security of commercially available products can only be checked through

manual inspection of their implementation, a process that requires a strong engineer-

ing and technical background, and a significant effort and time commitment. In turn,

proprietary assumptions and lack of a universal threat model frequently lead to imple-

mentations prone to attacks.

Our work aims at bridging the gap between formally modeling and verifying the

wallet’s properties and claimed specifications. In this chapter, we devise a formal model

22

Chapter 3. Formalization of Hardware Wallets 23

which defines the characteristics, specifications, and security requirements of hardware

wallets. Instead of capturing a hardware wallet as a single module, we conceptualize it as

a system of different modules that communicate with each other to perform the wallet’s

operations. This approach allows us to identify a greater set of potential attacks and the

conditions for them to be successful. To that end, we manually inspect commercial

products and extract their implementations, which we then map to our model. As we

show, hardware wallets are prone to a set of attacks and are secure only under specific,

well-defined assumptions. Therefore, our model can not only prove the security of

existing implementations, but also act as a reference guide for future implementations.

Related work. Until now, Bitcoin hardware wallets have only been empirically stud-

ied, with research focusing on the integrity of transactions. Gentilal et al. [GMS17]

stressed the necessity of separating the wallet into two environments, the trusted and

the non-trusted, and proposed that a wallet remains secure against attacks by isolating

the sensitive operations in the trusted environment. Similarly, Lim et al. [LKL+14] and

Bamert et al. [BDWW14], argue that security in Bitcoin wallets equals with tamper-

resistance and propose the use of cryptographic hardware. Hardware wallets have not

yet been extensively studied, since no formal attempt to specify the functionalities and

the security properties of such wallets exists so far. As of September 2018, research

has only focused on attacking commercially available implementations. Gkaniatsou et

al. [GAK17] showed that the low-level communication between the hardware and its

client is vulnerable to attacks which escalate to the account management. Their research

concluded to a set of attacks on the Ledger wallets, which allowed to take control of

the account’s funds. Hardware wallets have also been studied against physical attacks.

Volotikin [Vol18] showed that specific parts of the Ledger’s flash memory are accessible,

exposing the private keys used for the second factor verification mechanism. Datko et

al.presented fault injection, timing and power analysis attacks on KeepKey [Kee18] and

Trezor [Tre18a], which allowed them to extract the private key.

Contributions. This chapter provides a holistic formal treatment of hardware wal-

lets, identifying their core specifications and security properties. The proposed model

allows to reason about the offered security of existing wallets and acts as the foundation

for designing and implementing new ones. In particular, this chapter: i) defines the prop-

erties and requirements of hardware wallets; ii) provides a formal model and security

guarantees of such wallets; iii) evaluates the security of commercial products under a

Chapter 3. Formalization of Hardware Wallets 24

formal model.

In more detail, we identify the properties and security parameters of a Bitcoin hard-

ware wallet and formally define them in the Universal Composition (UC) Framework.

We present a modular treatment of a hardware wallet, by realizing the wallet as a set

of protocols. This approach allows us to capture in detail the wallet’s components and

interactions, and the potential threats. We deduce the wallet’s security by proving that

it is secure under common cryptographic assumptions, provided that there is no devia-

tion in the protocol execution. Finally, we define the attacks that are successful under a

protocol deviation, and analyze the security of commercially available wallets.

3.1 Formal Model of Hardware Wallets

Bitcoin relies on the Elliptic Curve Signature Scheme (ECDSA) for signing the transac-

tions and proving ownership of the assets. A Bitcoin account is defined by a key pair

(vk,sk). The public key vk is hashed to create an address 𝛼 for receiving assets, while

the private key sk is used to sign transactions that spend the assets that 𝛼 received.

Unauthorized access to sk can result in a loss of funds, thus raising the issue of securing

the account’s private keys. A Bitcoin wallet, which offers access to the network and

management of an account, is either implemented via software, i.e., is hosted online by

a third party or run locally, or hardware.

The first threat arises from broken cryptographic primitives. For instance, a broken

hash function may allow an attacker to correlate an address with multiple keys, whereas

a broken signature scheme may enable an attacker to forge transaction signatures, for

addresseswhich it does not own. Additionally, protecting against unauthorized access to

the wallet’s operations has been shown to be as important as using secure cryptographic

primitives [BMC+15, GAK17]. To that end, hardware wallets offer a tamper-resistant

and isolated environment for the cryptographic primitives.

However, a hardware wallet cannot exist in a standalone setting, but rather requires

a client via which it connects to the network. Thus, if the hardware is connected to a

compromised client, any inputs/outputs of the hardware can potentially be malicious.

For example, consider Bob, whose account is defined by the key pair (vk,sk), and an

adversary 𝒜, who is able to forge Bob’s signature. In this case any signature 𝜎𝒜 of

a message 𝑚𝒜 chosen by 𝒜 can be verified by vk; hence the adversary can spend all

assets that Bob has previously received, i.e., the assets sent to the hash of vk. Let us

now assume that Bob’s signature is unforgeable but 𝒜 controls the signing algorithm

Chapter 3. Formalization of Hardware Wallets 25

inputs, such that for any message 𝑚 that Bob wishes to sign, 𝒜 substitutes it with 𝑚𝒜.

Even though the signature is unforgeable, the adversary can still spend Bob’s assets by

tampering with the message.

Our model captures the family of attacks which tamper with the inputs/outputs of

the wallet’s operations. Thus, as we show, the security of a Bitcoin hardware wallet is

reduced to the security of the underlying cryptographic primitives and the honesty of the

three communicating parties, i.e., the hardware, the client, and the user who operates

them.

We note that our model does not capture attacks on the network level. In partic-

ular, we assume synchronous communication channels between the participants of the

hardware wallet system, i.e., the user, client, and hardware; this is a natural assump-

tion in this setting, as we expect a direct connection both between the client and the

hardware (e.g., via USB) and with the user (via I/O devices). However, we also assume

that, once a transaction is signed and transmitted by the client, it is published on the

ledger within a short time span. Therefore, our model does not capture possible live-

ness violations, e.g., delays due to congestion, but rather abstracts the ledger as an ideal

module that satisfies the necessary properties. Nonetheless, a hardware wallet model

that connects to a possibly temporarily insecure ledger would be a useful enhancement.

TheHardwareWallet Setting. Software, not being tamper-resistant, cannot guar-

antee a secure environment for the wallet’s operations. Instead, hardware wallets offer

such an environment by separating the wallet’s cryptographic primitives from the other

operations, e.g., connection to the Bitcoin network. These devices do not offer network

connectivity; instead they operate in an offline mode. Due to their limited memory ca-

pabilities and the absence of network access, they cannot keep track of the account’s

activities, e.g., past transactions. Thus, they connect to a dedicated software, the client,

which records the account’s actions and provides a usable interface to the user. Hard-

ware wallets operate under the assumption of a malicious host and provide a trusted

path with the user. Specifically, the hardware displays transaction-related data, which

the user compares to the data presented by the (potentially compromised) client. As

such, the user becomes part of the system and is responsible for identifying malicious

actions by the client.

The wallet operations are initiated by the user, they are executed by the client, the

hardware, or both, and are as follows:

• Setup: the hardware generates a master key pair (mvk,msk) and returns the pri-

Chapter 3. Formalization of Hardware Wallets 26

Figure 3.1: Transaction issuing in the hardware wallet setting.

vate key msk, i.e., the wallet’s seed, to the user; currently all wallets are Hierar-

chical Deterministic [DFL19], mostly based on the BIP32 standard [Wui18].

• Session Initialization: the hardware connects to the client and sends to it themaster

public key mvk;

• Generate Address: both the client and the hardware generate a new address and

return it to the user. The hardware derives a key pair (sk𝑖,vk𝑖) from (mvk,msk),
generates the address𝛼𝑖 and returns it to the user. The client may either generate

vk𝑖 using mvk or receive vk𝑖 from the hardware, then generates and stores the

corresponding address, and finally returns it to the user.

• Calculate Balance: given a list of the account’s addresses, the client iterates over

the ledger’s transactions, calculates the account’s available assets and returns this

amount to the user.

• Transaction Issuing: the user provides the payment data to the client, i.e., the

amount and receiver’s address, which then forwards them to the hardware to-

gether with the available inputs, i.e., the account’s addresses and balance, and

requests its signature. The hardware checks whether the inputs belong to the

managed account and generates a change address upon demand, i.e., if the bal-

ance is larger than the payable amount. Then, it requests the user’s approval of

the payment data; if the user confirms the payment, the hardware signs it and

returns the signature together with the corresponding public key to the client in

order to publish it on the network.

Figure 3.1 illustrates the issuing of a transaction in the hardware-enhanced wallet setting.

Chapter 3. Formalization of Hardware Wallets 27

Evidently, a hardware-assisted wallet is not a single module, but rather an “ecosys-

tem” of modules that communicate during an operation: the user, the client, and the

hardware. To treat it under the UC framework, we will next describe an ideal function-

ality, that defines the wallet’s properties, as well as its real world implementation. In

the ideal world, the wallet is a monolithic component-functionality, responsible for all

aforementioned operations. In the real world, the wallet emerges through the interac-

tion of the human operator, the client (i.e., a desktop computer, tablet, or smartphone),

and a tamper resistant hardware component. To prove the security of the real-world

protocol, we will compare the two executions (in the real and ideal settings) and show

that they are indistinguishable.

Ideal World. The wallet functionality, ℱw, defines the wallet’s operations in the

ideal setting. ℱw interacts with the global Bitcoin ledger functionality 𝒢LEDGER, as de-

fined in [BMTZ17], in order to execute operations requiring access to the decentralized

system. 𝒢LEDGER is the ideal functionality that models the Bitcoin ledger and allows a

wallet to register itself, publish transactions and retrieve the state of the ledger, i.e., all

published transactions. ℱw generates a unique address per public key and also incor-

porates a signature functionality, ℱSIG, as defined in [Can03]; for ease of notation, we

show ℱSIG as a separate component in the ideal world, although in fact ℱw simply re-

peats the steps defined in ℱSIG. Specifically, the wallet registers itself with ℱSIG, which

creates fresh keys for the account upon request, e.g., during address generation, and

signs messages, e.g., transactions. ℱSIG is also accessed by the validation predicate of

𝒢LEDGER, in order to verify a transaction’s signature during the validation stage.

Real World. The operations defined by ℱw are executed in the real world by a

set of communicating parties: the hardware, the client, and the user. Thus the proto-

cols of the hardware 𝜋ℎ𝑤, the client 𝜋𝑐𝑙𝑖𝑒𝑛𝑡, and the human 𝜋ℎ𝑢𝑚𝑎𝑛 define the actions

of the corresponding parties. The hardware protocol 𝜋ℎ𝑤, uses a signature scheme

Σ ≡ ⟨KeyGen,Verify,Sign⟩, a cryptographic hash function H and a pseudorandom key

generation function HierarchicalKeyGen(msk, 𝑖), in order to derive children keys from

the master key. A basic assumption of this setting is that 𝜋𝑐𝑙𝑖𝑒𝑛𝑡 runs in an untrusted

environment, i.e., we do not assume the software to be secure. Thus, in our model,

connection to a malicious client is equivalent to corruption of the client by the adversary.

Finally, the user communicates with the hardware and the client via a secure channel,

i.e., can interact directly with the device via buttons and/or a display.

Chapter 3. Formalization of Hardware Wallets 28

Validation Predicate. In both settings, ℱw and the real-world parties have access

to a global Bitcoin ledger functionality 𝒢LEDGER, as defined in [BMTZ17]. 𝒢LEDGER is

parameterized with the validation predicate Validate, which identifies whether a trans-

action can be added to its buffer, i.e., if it is valid for publishing on the ledger. The

predicate takes as input the candidate transaction, the buffer, and the current state.

The transaction consists of the signed data 𝜏𝜎 = (𝜏,vk,𝜎) and ledger parameters, e.g.,

the transaction id, which is a unique identifier of the transaction, and the timestamp,

i.e., the time defined by a global clock. Intuitively, the Bitcoin state is the blockchain,

while the buffer is the mempool, which contains the transactions that have not yet been

included in the blockchain. In our model, the validation predicate performs the signa-

ture verification of a transaction. This is formalized with a wrapper ValidateWrapper,
which wraps all instantiations of the validation predicate. In the ideal world, the wrapper

accesses the signature functionality ℱSIG to verify the transaction’s signature; if the sig-

nature is not valid, then it directly outputs 0, otherwise it performs all additional checks,

such as verifying the consumed funds and checking the amounts’ validity. The ideal

wrapper IdealValidateWrapper is described in Algorithm 1. The real-world wrapper

RealValidateWrapper uses a signature scheme instead of ℱSIG and behaves similarly

to Algorithm 1, i.e., it first parses BTX and then performs the same branch checks on

Verify(𝜏,vk,𝜎) and returns the proper boolean value.

Algorithm 1 The validation predicate wrapper, parameterized by Validate and ℱSIG.

The input is a transaction BTX, the buffer buffer and the state state.
function IdealValidateWrapper(BTX,buffer,state)

(𝜏,vk,𝜎, txid, 𝜏𝐿,𝑝𝑖) = parse(BTX)
Send (Verify,sid, 𝜏 ,𝜎,vk) to ℱSIG and receive (Verified,sid, 𝜏 ,𝑓)
return 𝑓

end function

Finally, Figure 3.2 illustrates the ideal and the real world settings. In both worlds,

the environment 𝒵 interacts with the adversary; Specifically, in the ideal world it in-

teracts with the simulator 𝒮 and in the real world with the adversary 𝒜. In the ideal

world, the wallet consists of the ideal wallet functionality ℱw and the signature function-

ality ℱSIG. In the real world, it consists of the user, client, and hardware parties, who

execute the respective protocols 𝜋ℎ𝑢𝑚𝑎𝑛,𝜋𝑐𝑙𝑖𝑒𝑛𝑡,𝜋ℎ𝑤. Communication between the

human, client, and hardware is achieved over a UC-secure channel protocol, as presented

by Canetti [CK02]. Specifically, the adversary is able to observe the encrypted commu-

Chapter 3. Formalization of Hardware Wallets 29

Figure 3.2: A high-level comparison of the ideal and the real worlds.

nication between the honest parties, but can only retrieve the length of the exchanged

messages and not tamper with the plaintext. In practice, this can be achieved by es-

tablishing a secure channel between the client and the hardware module using standard

key exchange techniques, while the human-hardware channel is assumed to be secure

by default. We note that, in the absence of a secure channel, the adversary may tamper

with the communication, so, in our model, an insecure channel is equivalent to the client

being corrupted.

In the chapter’s upcoming sections we use a simplified transaction model, for ease

of notation. Specifically, each transaction defines a single input and output. We note

that adapting it for multiple inputs and outputs, in order to properly model real-world

ledgers, is rather straightforward. The wallet’s key pairs, and consequently its addresses,

are generated using themaster key pair (mvk,msk), which is randomly selected from the

key domain 𝕂 upon the wallet’s setup. Following, the addresses’ keys are derived from

a master key pair as sk𝑖 = msk + H(𝑖,mvk)(mod 𝑛) and vk𝑖 = mvk + H(𝑖,mvk) × 𝑁 ,

where 𝑖 is the index of an address and 𝑛,𝑁 are public parameters of the Elliptic Curve.

A hardware wallet transaction is a tuple 𝜏 = (𝛼s,𝛼r,𝜃pay,𝛼c,𝜃change). Specifically, 𝛼s

denotes the sender’s address, 𝛼r the receiver’s address, and 𝛼c the change address.

Additionally, 𝜃pay, 𝜃change 𝜃fee are the payment, change and fee funds respectively; no-

tably, 𝜃change equals to the account’s balance minus the payment and the fee amounts,

i.e., 𝜃change = balanceOf(𝛼s) − 𝜃pay − 𝜃fee. A signed transaction is the tuple (𝜏,vk,𝜎),
where 𝜎 is the signature of 𝜏 under the public key vk. The parties that execute an oper-
ation are the user 𝒰, i.e., the owner of the wallet, the client 𝒟, i.e., the device to which

the hardware connects, and the hardware ℋ. Each message is associated with a session

id sid′ = 𝒰𝒟ℋ, which defines the parties with which it is related.

Chapter 3. Formalization of Hardware Wallets 30

3.2 The Ideal Functionality

ℱw (Figures 3.3 and 3.4) incorporates ℱSIG and runs in the 𝒢LEDGER-setting, interacting

with the adversary 𝒜, a set of parties ℙ, and the environment 𝒵. It keeps the following,

initially empty, items: i) 𝐴[]: a list of lists, each containing addresses and their corre-

sponding public keys, (𝛼,vk); ii) 𝐵[]: a list of lists, each containing addresses and their

corresponding balance, (𝛼,𝜃); iii) 𝐾[]: a list of master keys (mvk,msk). ℱw realizes the

following operations, with all messages containing a session id of the form sid = (ℙ,sid′):

• Wallet setup: Upon a setup request, it initializes the list of addresses, generates

the account’s master key, registers to 𝒢LEDGER, and returns the master private

key to the user.

• Client Corruption: When 𝒜 corrupts a client 𝒟, ℱw leaks the public keys and

addresses to which 𝒟 has access.

• Client session initialization: To start a new session, ℱw computes and sends to 𝒟,

defined in sid′, an assigned pass phrase; in the real world, the pass phrase acts as

the authentication mechanism between the parties.

• Address generation: ℱw requests a new public key from ℱSIG and picks at random

an address, with which to associate the key; it then stores the new address in the

corresponding list and returns it to 𝒵. If the client is corrupted, the functionality

leaks the address and public key to 𝒜.

• Balance calculation: If 𝒟 is honest, it queries the ledger to retrieve the blockchain;

if the connected client is corrupted, it requests a chain from 𝒜. Then, it calculates

the wallet’s available assets, based on the provided chain, and returns it to 𝒵.

• Transaction issuing: Upon receiving a transaction request, if 𝒟 is corrupted, ℱw

leaks the transaction information to the adversary, which responds with a new

transaction object. If 𝒰 is also corrupted, ℱw discards the original request and

keeps the adversarial transaction, otherwise it ignores the adversary’s response.

Finally, ℱw requests a signature from ℱSIG for the accepted transaction, which it

then sends to 𝒢LEDGER.

Chapter 3. Formalization of Hardware Wallets 31

Setup: Upon receiving (Setup,sid) from some party 𝒰 ∈ ℙ, forward it to 𝒜.

Then add the empty list 𝐴𝒰 to 𝐴[], register with 𝒢LEDGER, pick the master key

pair (msk𝒰,mvk𝒰) $←− 𝕂 and add it to 𝐾[] and return (SetupOK,sid) to 𝒰.

Client Corruption: When 𝒜 corrupts 𝒟, send to 𝒜 (AddressList,sid,𝐴𝒰) and

(MasterPubKey,sid,mvk𝒰), for every 𝒰 such that a Setup session with 𝒟 has

been completed.

Initialize Client Session: Upon receiving (InitSession,sid) from 𝒰, pick

pass𝒟
$←− {0,1}𝜅 and send (InitSession,sid,pass𝒟) to 𝒟. If 𝒟 is cor-

rupted, send (InitSession,sid,pass𝒟) to 𝒜 and wait for a response

(InitSessionOK,sid,pass𝒟). Finally, send (Session,sid,pass𝒟) to 𝒰.

Generate Address: Upon receiving (GenAddr,sid) from 𝒰, send (KeyGen,sid) to
ℱSIG and wait for a response (Verification Key,sid,vk). Then pick 𝛼 $←− {0,1}ℓ

and add (𝛼,vk) to 𝐴𝒰. If 𝒟 is corrupted, send (Address,sid, (𝛼,vk)) to 𝒜 and

wait for a response (AddressOK,sid,𝛼′). If 𝒰 is corrupted, set 𝑎 = 𝛼′, else set

𝑎 = 𝛼; finally, return (Address,sid,𝑎) to 𝒰.

Calculate Balance: Upon receiving (GetBalance,sid) from 𝒰, send (Read,sid)
to 𝒢LEDGER and wait for a response (Read,sid,𝒞). If 𝒟 is corrupted, send

(Read,sid) to 𝒜 and, upon receiving the response (Read,sid,𝒞′), set 𝒞 =
𝒞′. Then initialize the list 𝐵𝒰 ∈ 𝐵[] with (𝑎,0) for every address (𝑎, ⋅)
in 𝐴𝒰, and ∀𝜏 ∈ 𝒞, i.e., the ordered transactions in the ledger s.t. 𝜏 =
(𝛼𝑠,𝛼𝑟,𝜃pay,𝛼𝑐,𝜃change), do:

• If ∃(𝛼𝑠, ⋅) ∈ 𝐴𝒰, update the entry (𝛼𝑠,𝜃past) ∈ 𝐵𝒰 to (𝛼𝑠,0);

• If ∃(𝛼𝑟, ⋅) ∈ 𝐴𝒰, update the entry (𝛼𝑟,𝜃past) ∈ 𝐵𝒰 to (𝛼𝑟,𝜃past +𝜃pay);

• If ∃(𝛼𝑐, ⋅) ∈ 𝐴𝒰, update the entry (𝛼𝑐,𝜃past) ∈ 𝐵𝒰 to (𝛼𝑐,𝜃past +𝜃change);

Finally, compute 𝑏 = ∑(⋅,𝜃)∈𝐵𝒰
𝜃 and send (Balance,sid, 𝑏) to 𝒰.

Functionality ℱw

Figure 3.3: The ideal hardware wallet functionality. (Part 1)

Chapter 3. Formalization of Hardware Wallets 32

Issue Transaction: Upon receiving (IssueTX,sid, (𝛼𝑟,𝜃pay,𝜃fee)) from 𝒰, if

𝒟 is corrupted, forward the message to 𝒜 and wait for a response

(IssueTx,sid,pass𝒟, (𝛼′
𝑟,𝜃′

pay,𝜃′
fee)). If 𝒰 is corrupted, set (𝛼𝑟,𝜃pay,𝜃fee) =

(𝛼′
𝑟,𝜃′

pay,𝜃′
fee). Then, find (𝛼𝑖𝑛,𝜃𝑖𝑛) ∈ 𝐵𝒰 ∶ 𝜃𝑖𝑛 ≥ 𝜃pay + 𝜃fee. If such en-

try exists, do the following: i) compute an address 𝛼𝑐 and its public key vk𝑐,

as per the Generate Address interface; ii) set 𝜃change = 𝜃𝑖𝑛 − 𝜃pay − 𝜃fee and

𝜏 = (𝛼𝑖𝑛,𝛼𝑜𝑢𝑡,𝜃pay,𝛼𝑐,𝜃change); iii) send (Sign,sid, 𝜏) to ℱSIG and wait for

(Signature,sid, 𝜏 ,𝜎); iv) find (𝛼𝑖𝑛,vk) ∈ 𝐴𝒰 and set 𝜏𝜎 = (𝜏,vk,𝜎). Then, if

𝒟 is corrupted, send (Address,sid,𝛼𝑐,vk𝑐) and (Submit,sid, 𝜏𝜎) to 𝒜 and wait

for the response (SubmitOK,sid). Finally, send (Submit,sid, 𝜏𝜎) to 𝒢LEDGER.

Functionality ℱw

Figure 3.4: The ideal hardware wallet functionality. (Part 2)

3.3 The Real-World Hybrid Setting

The hybrid setting, which realizes the ideal functionality, consists of the human 𝜋ℎ𝑢𝑚𝑎𝑛,

client 𝜋𝑐𝑙𝑖𝑒𝑛𝑡, and hardware 𝜋ℎ𝑤 protocols, each defining the set of operations run by

the corresponding parties.

Human Protocol. The user 𝒰 interacts with 𝒟, ℋ, and 𝒵, and runs the protocol

𝜋ℎ𝑢𝑚𝑎𝑛 (Figure 3.5), which defines the following, initially empty, items: i) 𝑇 : a list of

transactions 𝜏 = (𝛼𝑟,𝜃pay,𝜃fee); ii) 𝑆: a list of client sessions sid. Under the model, a

session is initialized when 𝒰 connects the hardware module to the client. 𝒰 assigns a

random pass phrase pass𝒟 to each client, which is chosen upon session initialization. 𝒰
keeps track of the initiated sessions and pending transactions. However, 𝒰 does not

perform complex computations, such as verifying a signature, or maintain a large state,

like the entire list of generated addresses. Instead, 𝒰 has a memory 𝑇 , which contains

only the pending transactions, and also is capable of performing simple computations

(like addition/subtraction) and equality checks between strings.

Client Protocol. The client 𝒟 interacts with 𝒰, the hardware wallet ℋ, and the

environment 𝒵. The protocol 𝜋𝑐𝑙𝑖𝑒𝑛𝑡 (Figure 3.6) defines the following items: i) mvk:
the master public key of the wallet; ii) 𝑖: the key derivation index; iii) pass𝒟: the pass

phrase assigned by 𝒰; iv) 𝐴𝑐𝑙𝑖𝑒𝑛𝑡: a list of the account’s addresses; v) 𝑇𝑢𝑡𝑥𝑜: a list of

Chapter 3. Formalization of Hardware Wallets 33

Setup: Upon receiving (Setup,sid) from 𝒵, forward it to ℋ, and initialize 𝑇 to

empty. Then, upon receiving (SetupOK,sid) from ℋ, forward it to 𝒵.

Initialize Client Session: Upon receiving (InitSession,sid) from 𝒵, pick

pass𝒟
$←− {0,1}𝜅 and send (InitSession,sid,pass𝒟) to 𝒟. Upon receiving

(InitSession,sid,pass′
𝒟) from ℋ, if pass′

𝒟 = pass𝒟, add pass𝒟 to 𝑆 and send

(Session,sid,pass′
𝒟) to ℋ and 𝒵.

Generate Address: Upon receiving (GenAddr,sid) from 𝒵, forward it to 𝒟 and

wait for two messages, (Address,sid,𝛼𝑐𝑙𝑖𝑒𝑛𝑡) from 𝒟 and (Address,sid,𝛼ℎ𝑤)
from ℋ. If 𝛼𝑐𝑙𝑖𝑒𝑛𝑡 = 𝛼ℎ𝑤, send (Address,sid,𝛼ℎ𝑤) to 𝒵.

Calculate Balance: Upon receiving (GetBalance,sid) from 𝒵, forward it to 𝒟.

Then, upon receiving (Balance,sid, 𝑏) from 𝒟, forward it to 𝒵.

Issue Transaction: Upon receiving (IssueTX,sid, 𝜏) from 𝒵, such that 𝜏 =
(𝛼𝑟,𝜃pay,𝜃fee), add 𝜏 to 𝑇 and forward the message to 𝒟. Upon receiving

(CheckTx,sid,pass𝒟, 𝜏 ′, 𝑏′) from ℋ, if pass𝒟 ∈ 𝑆, 𝜏 ′ ∈ 𝑇 and 𝑏′ = 𝑏 − 𝜃pay −
𝜃fee, remove 𝜏 ′ from 𝑇 and send (IssueTx,sid,pass𝒟, 𝜏) to ℋ.

Protocol 𝜋ℎ𝑢𝑚𝑎𝑛

Figure 3.5: The “human” protocol run by 𝒰.

Chapter 3. Formalization of Hardware Wallets 34

address balances. 𝒟 acts a proxy between 𝒰 and ℋ, providing connectivity to the

ledger and executing blockchain-related operations, such as computing the account’s

balance. During the address generation, 𝒟 retrieves the public key from ℋ; in practice

this is optional, as 𝒟 can generate an address independently, via the derivation process

of the hierarchical deterministic wallets.

Initialize Client Session: Upon receiving (InitSession,sid,𝑝) from 𝒰, forward it to

ℋ; upon receiving (MasterPubKey,sid,𝑘) from ℋ, set pass𝒟 = 𝑝, mvk = 𝑘 and

𝑖 = 1.
Generate Address: Upon receiving (GenAddr,sid) from 𝒰, forward it to ℋ.

Then, upon receiving (PubKey,sid,vk𝑖) from ℋ, compute 𝛼𝑖 = H(vk𝑖), set
𝑖 = 𝑖+1, and add 𝛼𝑖 to 𝐴𝑐𝑙𝑖𝑒𝑛𝑡. Finally, send (Address,sid,𝛼𝑖) to 𝒰.

Calculate Balance: Upon receiving (GetBalance,sid) from 𝒰, send (Read,sid)
to 𝒢LEDGER. Upon receiving (Read,sid,𝒞) from 𝒢LEDGER, set 𝑇𝑢𝑡𝑥𝑜 to the

empty list and ∀𝜏 ∈ 𝒞, i.e., the ordered transactions in the ledger s.t. 𝜏 =
(𝛼𝑠,𝛼𝑟,𝜃pay,𝛼𝑐,𝜃change), do:

• If 𝛼𝑠 ∈ 𝐴𝑐𝑙𝑖𝑒𝑛𝑡, update the entry (𝛼𝑠,𝜃past) ∈ 𝑇𝑢𝑡𝑥𝑜 to (𝛼𝑠,0);

• If 𝛼𝑟 ∈ 𝐴𝑐𝑙𝑖𝑒𝑛𝑡, update (𝛼𝑟,𝜃past) ∈ 𝑇𝑢𝑡𝑥𝑜 to (𝛼𝑟,𝜃past +𝜃pay);

• If 𝛼𝑐 ∈ 𝐴𝑐𝑙𝑖𝑒𝑛𝑡, update (𝛼𝑐,𝜃past) ∈ 𝑇𝑢𝑡𝑥𝑜 to (𝛼𝑐,𝜃past +𝜃change).

Finally, compute 𝑏 = ∑(⋅,𝜃)∈𝑇𝑢𝑡𝑥𝑜
𝜃 and send (Balance,sid, 𝑏) to 𝒰.

Issue Transaction: Upon receiving (IssueTX,sid, 𝜏) from 𝒰, such that 𝜏 =
(𝛼𝑟,𝜃pay,𝜃fee), send (SignTx,sid,pass𝒟, 𝜏 ,𝑇𝑢𝑡𝑥𝑜) to ℋ. Upon receiving

(ChangeIndex,sid, 𝑖𝑑𝑥), set 𝑖 = 𝑖𝑑𝑥 and compute and store the change address

and its public key, as in the Generate Address interface. Then, upon receiving

(SignTx,sid, 𝜏𝜎) from ℋ, send (Submit,sid, 𝜏𝜎) to 𝒢LEDGER.

Protocol 𝜋𝑐𝑙𝑖𝑒𝑛𝑡

Figure 3.6: The client protocol run by 𝒟.

Hardware Wallet Protocol. The hardware ℋ interacts with 𝒟 and 𝒰 and runs

the protocol 𝜋ℎ𝑤 (Figure 3.7), which defines the following items: i) 𝑖: the key derivation
index, ii) 𝑆: a list of the active client sessions, iii) (mvk,msk): the master key pair of the

Chapter 3. Formalization of Hardware Wallets 35

wallet, and iv)𝐴: a list that contains tuples like (𝑖,𝛼𝑖,sk𝑖,vk𝑖), where 𝑖 is a key derivation
index and 𝛼𝑖, (sk𝑖,vk𝑖) a generated address and its corresponding key. ℋ can perform

some specific complex computations, such as hashing or signature issuing, has limited

memory, and completely lacks network connectivity.

Setup: Upon receiving (Setup,sid) from 𝒰, initialize 𝑆 and 𝐴 to empty lists. Then

compute (mvk,msk) ← KeyGen(1𝜅), set 𝑖 = 1, and return (Setup,sid,msk) to
𝒰.

Initialize Client Session: Upon receiving (InitSession,sid,pass𝒟) from 𝒟, forward

it to 𝒰. Upon receiving (Session,sid,pass′
𝒟) from 𝒰, add pass′

𝒟 to 𝑆 and send

(MasterPubKey,sid,mvk) to 𝒟.

Generate Address: Upon receiving (GenAddr,sid) from 𝒟, compute (sk𝑖,vk𝑖) =
HierarchicalKeyGen(msk, 𝑖) and 𝛼𝑖 = H(vk𝑖). Then, store (𝑖,𝛼𝑖,sk𝑖,vk𝑖) to 𝐴,

set 𝑖 = 𝑖+1, and return (Address,sid,𝛼𝑖) to 𝒰 and (PubKey,sid,vk𝑖) to 𝒟.

Issue Transaction: Upon receiving (SignTx,sid,pass𝒟, 𝜏 ,𝑇𝑢𝑡𝑥𝑜) from 𝒟, where

𝜏 = (𝛼𝑟,𝜃pay,𝜃fee), find an entry (𝛼𝑖𝑛,𝜃in) ∈ 𝑇𝑢𝑡𝑥𝑜 ∶ 𝜃in ≥ 𝜃pay +𝜃fee. If such en-

try exists, then: i) find (⋅,𝛼𝑖𝑛,sk𝑖𝑛,vk𝑖𝑛) ∈ 𝐴; ii) compute 𝜃change = 𝜃in −𝜃pay −
𝜃fee; iii) create an address𝛼𝑐, as in theGenerate Address interface; iv) compute 𝑏 =
∑(⋅,𝜃)∈𝑇𝑢𝑡𝑥𝑜

𝜃 and set 𝑏′ = 𝑏−𝜃pay −𝜃fee. Then, send (ChangeIndex,sid, 𝑖) to 𝒟
and (CheckTx,sid,pass𝒟, 𝜏 ′,balance′) to 𝒰, where 𝜏 ′ = (𝛼𝑟,𝜃pay,𝜃′

fee). Upon
receiving (IssueTx,sid,pass𝒟, 𝜏) from 𝒰, set 𝜏 = (𝛼𝑖𝑛,𝛼𝑟,𝜃pay,𝛼𝑐,𝜃change),
compute 𝜏𝜎 = (𝜏,vk𝑖𝑛,Sign(𝜏,sk𝑖𝑛)) and send (SignTx,sid, 𝜏𝜎) to 𝒟.

Protocol 𝜋ℎ𝑤

Figure 3.7: The hardware protocol run by ℋ.

3.4 Security Analysis

We now assess the security of the proposed model, to prove the security of the hybrid

setting w.r.t. ℱw. Our model, as defined in ℱw, incorporates the following problematic

scenarios:

1) Privacy loss: when 𝒜 corrupts a client, he accesses the account’s public keys,

addresses, and balance;

Chapter 3. Formalization of Hardware Wallets 36

2) Payment attack: during transaction issuing, 𝒜 may tamper with the inputs to alter

the payable amounts and/or the receiving address; this attack is successful if the

client is corrupted and the user deviates from their expected behavior, i.e., does

not reject the malicious data;

3) Address generation attack: 𝒜 may tamper with address generation on the client’s

side, providing an adversarial address to the user; again, this attack is successful

if the client is corrupted and the user deviates from their expected behavior, i.e.,

does not cross-check the addresses provided by the client and the hardware;

4) Chain attack: 𝒜 may tamper with the balance calculation by providing a malicious

chain to the wallet; this family of attacks is successful if only the client is corrupted,

i.e., regardless if the user follows the protocol.

Although the first three scenarios have been previously identified by empirical stud-

ies [doc18, GAK17], the chain attack is more nuanced. Under our model, the client is

the only party that connects to the network. Therefore, a corrupted client can mount

an eclipse attack [HKZG15], like the chain attack showcased by the following example.

Let 𝒞⊤ be the honest chain, i.e., the longest chain available on the network. Also,

let 𝜏 be a transaction which transfers 𝜃in funds to an address 𝛼; 𝜏 is published in the

𝑗-th block ℬ𝑗 of 𝒞⊤. Let 𝒞 ≺ 𝒞⊤ be a prefix of 𝒞⊤, which does not include ℬ𝑗. Also

assume that 𝒞 includes a number of transactions, which transfer an aggregate amount

𝜃past to 𝛼. When the hardware requests a chain, the adversary 𝒜 supplies 𝒞 instead of

𝒞⊤. Hence, during balance calculation, the wallet assumes that 𝛼 owns only 𝜃past funds,

instead of the correct amount 𝜃past + 𝜃in. Following, when the user attempts to spend

the assets owned by𝛼, the wallet does not consume the latest UTxO (of 𝜃in assets), as it

is not aware of it. This may result in various hazards, from displaying a wrong balance to

the user to failing to recover these funds, e.g., if the wallet deletes old (i.e., consumed)

addresses.

To prove the security of our model, we show that the hybrid setting of Section 3.3

(denoted by 𝜋ℎ𝑦𝑏𝑟𝑖𝑑) securely realizes the wallet ideal functionality ℱw of Section 3.2.

In the ideal execution, 𝒢LEDGER uses the wrapper IdealValidateWrapper of Section 3.1,
whereas in the real world it utilizes RealValidateWrapper. Theorem 1 is restricted to

environments that do not corrupt the hardware party ℋ; in effect, our analysis does

not consider attacks mounted by the hardware’s manufacturer or physical attacks.

Theorem 1 (Hybrid Wallet). Let the hybrid setting 𝜋ℎ𝑦𝑏𝑟𝑖𝑑, which is parameterized by a

signature scheme Σ and a hash function H, and interacts with 𝒢LEDGER, parameterized by

Chapter 3. Formalization of Hardware Wallets 37

RealValidateWrapper. 𝜋ℎ𝑦𝑏𝑟𝑖𝑑 securely realizes the ideal functionality ℱw, which interacts

with 𝒢LEDGER parameterized by IdealValidateWrapper, if and only if Σ is EUF-CMA and

H is an instantiation of the random oracle.

Proof. The “if” part. For this part of the theorem we assume that the environment 𝒵
can distinguish between the ideal and the real execution with non-negligible probability.

We then describe a “generic” simulator 𝒮 for each adversary 𝒜, which emulates the in-

terfaces defined by the functionality. 𝒮 also runs an internal copy of 𝒜 and forwards the

outputs of its computations to 𝒜. We then construct a forger 𝐺 that runs an internal

simulation of the environment 𝒵. Thus, for each property assumption, we show that

there exists a “bad” event 𝐸 such that, as long as 𝐸 does not occur, the two execu-

tions are statistically close. However, when 𝐸 occurs, the environment 𝒵 distinguishes

between the executions. At this point, 𝐺 uses 𝒵 and outputs the values that break the

property under question. Therefore, since, by assumption, 𝐸 occurs with non-negligible

probability, we show that 𝐺 is also successful with non-negligible probability.

The simulator. Let us now construct the generic simulator 𝒮. For every interface

defined by the ideal functionality, 𝒮 completes the operations in the manner defined

by the protocols in the hybrid setting. It internally runs a copy of the adversary 𝒜 and

forwards the necessary messages to it as defined in the hybrid setting. So, the view of

the 𝒜 when it interacts with 𝒮 is the same as in the case it operates in the real world

setting. 𝒮 performs as follows:

• Any inputs received from the environment 𝒵, forward them to the internal copy

of 𝒜. Moreover, forward any output from 𝒜 to 𝒵;

• Party Setup: For every party 𝒫 for which ℱw sends messages, spawn an internal

simulation of 𝒰, 𝒟, and ℋ, which also interact with 𝒜 as needed and run the

protocols 𝜋ℎ𝑢𝑚𝑎𝑛, 𝜋𝑐𝑙𝑖𝑒𝑛𝑡 and 𝜋ℎ𝑤 respectively;

• Party Corruption: Whenever the adversary 𝒜 corrupts a party, 𝒮 corrupts it in the

ideal process and hands to 𝒜 its internal state;

• (Setup, Initialize Session, Generate Address, Issue Transaction): For any message for

these interfaces, follow the protocols 𝜋ℎ𝑢𝑚𝑎𝑛, 𝜋𝑐𝑙𝑖𝑒𝑛𝑡, and 𝜋ℎ𝑤.

To prove the theorem regarding the properties of the signature scheme we follow

the reasoning of Canetti [Can03]. Wewill show the proof for the unforgeability property

of the signature scheme, as the proofs for the other properties follow similarly.

Chapter 3. Formalization of Hardware Wallets 38

Unforgeability. Assume that consistency and completeness hold for Σ and H instanti-

ates the random oracle. In this case, the Setup, Initialize Session and Generate Address

interfaces are the same in the both settings from 𝒜’s point of view. Since, by assump-

tion, 𝒵 distinguishes between the two, this occurs during the Issue Transaction phase,

i.e., by observing a valid signature of a transaction which has not been issued by the

hardware wallet.

We now construct a forger 𝐺 that runs a simulated copy of 𝒵. 𝐺 follows the

generic simulator as above, except for the transaction issuing interface. Upon receiv-

ing (Submit,sid, 𝜏𝜎), where 𝜏𝜎 = (𝜏,vk,𝜎), it checks if Verify(𝜏,vk,𝜎) = True. If so, it
accesses the internal state of the hardware ℋ and checks whether it has issued 𝜏𝜎. If

so, then it continues the simulation. Else 𝐺 outputs 𝜏𝜎 as a forgery. Since, as long as

this does not occur, the two executions are statistically close and, by assumption, 𝒵 is

successful with non-negligible probability, then the probability that 𝐺 is also successful

is non-negligible.

The “only if” direction. We show that if one property does not hold, the probability

that the “bad” event 𝐸 (as above) occurs is non-negligible, so that the environment 𝒵
can distinguish between the real and ideal executions. Again we prove the theorem for

the unforgeability property, as the proofs for the other properties of Σ are constructed

similarly. Also, we conclude the proof with the address randomness property, which

accompanies the assumption that H instantiates a random oracle.

Unforgeability. Assume that unforgeability does not hold for Σ, i.e., there exists a

forger 𝐺 for Σ. When 𝐺 wishes to obtain a signature for some message 𝑚, the envi-

ronment sends the message (IssueTx,sid,𝑚) and forwards the response to𝐺. When𝐺
outputs a forgery 𝜏𝜎 = (𝜏,vk,𝜎), if 𝜏 has been previously signed, 𝒵 halts. Else it sends 𝜏𝜎
to 𝒢LEDGER and observes the ledger’s updates. In the ideal setting, the transaction will

be rejected by the validation predicate and will never be included in the ledger. How-

ever, in the real world, the probability that the transaction is accepted and eventually

published in the ledger is non-negligible, as the forgery output by 𝐺 is successful with

non-negligible probability.

Address randomness. Assume that all properties forΣ hold. Now, the Setup, Initialize

Session and Issue Transaction interfaces are similar in both settings. So, if the two worlds

are distinguishable, then this is due to address generation. Specifically, 𝒵 should observe

addresses which are not uniformly distributed over the space of possible addresses. This

is impossible in the ideal world, by construction. However, if this was true for the real

world, then H would not instantiate the random oracle. Therefore, by assumption, it is

Chapter 3. Formalization of Hardware Wallets 39

impossible for 𝒵 to distinguish between the two worlds.

Our model, and the accompanying Theorem 1, can be used to prove the security of

any hardware wallet that realizes the hybrid setting. Specifically, to evaluate a wallet im-

plementation, we first need to identified whether it faithfully realizes the three protocols.

Under this premise, the security assumptions of its building components should be eval-

uated. More precisely, the signature algorithm that the wallet uses must be EUF-CMA,
the hash function must simulate the random oracle, and the communication channels

between the parties must be secure. Typical examples of such components are the

ECDSA [JMV01] signature algorithm and a SHA-2 [PvW08] hash function. If these as-

sumptions hold, then the wallet is secure under our model.

Finally, one core assumption that deems further investigation is the honesty of the

human user of the wallet. In Section 3.3, we presented a well-defined protocol that

the user should follow. As shown in Section 3.4, as long as the parties follow the de-

fined protocols faithfully, and the cryptographic primitives used are strong enough, the

hardware wallet is secure. The integrity of transaction issuing and address generation is

based, however, on the assumption that the user follows 𝜋ℎ𝑢𝑚𝑎𝑛 correctly.

𝜋ℎ𝑢𝑚𝑎𝑛 requires from the user to identify malicious data, by comparing the data

shown by the client with the data shown by the hardware. In practice, the presented

data is long hexadecimals (i.e., Bitcoin addresses). However, even though such compar-

ison is trivial for software, people are prone to errors. Comparison of long hexadeci-

mal strings has been proved a challenging procedure, with research [HLS+09, TBB+17,

UKA07] suggesting that it is unrealistic to expect a perfect comparison of cryptographic

hashes, as humans find this process difficult. In real world scenarios, the user typically

acts hastily, which often causes deviations from the “honest” behavior. Additionally, ex-

pecting the user to manually copy a Bitcoin address from the hardware’s screen defeats

the usability purposes of the wallets. Thus, it is highly possible that the user simply copies

the address directly from the client. Hence, such usability difficulties of the compare-

and-confirm process open an attack vector for the payment and address generation

attacks.

Wemodel the probability of a user diverging from 𝜋ℎ𝑢𝑚𝑎𝑛 as a random variable 𝑅ℎ.

The distribution of𝑅ℎ may vary, depending both on the vigilance of the user and usability

parameters. For example, a user allowing all requests to be completed without checks,

e.g., because the process takes too long and the data is difficult to read, demonstrates

𝑅ℎ close to 1. A user who carefully checks the data, e.g., because the hardware presents

Chapter 3. Formalization of Hardware Wallets 40

it in such way that captures the user’s attention, demonstrates 𝑅ℎ closer to 0. Finally,
another factor that affects𝑅ℎ is address length; the longer the address, the more difficult

to read and compare.

3.5 Product evaluation

The evaluation of commercial hardware wallet products was performed on September

2018. At that time, the hardware wallets suggested by bitcoin.org were Digital Bitbox,

KeepKey, Ledger, and Trezor. The latter 3 had an embedded screen to present in-

formation to the user, so we focus on them. We manually inspected these wallets,

identified their protocols, and mapped them to our model.

These implementations bare significant similarities to each other and our model. Al-

though the wallets did have different low-level implementations, the protocols that they

execute are captured by the hybrid setting of Section 3.3. This similarity, between our

model and the actual implementations, reaffirmed the correctness of previous empirical

studies, which suggest that the Ledger wallets are prone to the payment [GAK17] and

address generation [doc18] attacks. The wallets were subject to these attacks when

the client is dishonest and secure only if the cryptographic primitives are secure and the

user does not deviate from the defined protocol, i.e., successfully identifies tampered

data. Moreover, the instantiation of our model to the three implementations suggests

that the wallets were prone to chain attacks, as discussed in Section 3.4.

For each implementation we focused on the two core wallet operations: address

generation and transaction issuing. Since all implementations were susceptible to chain

attacks, we focused on the viability of payment and address attacks in each case. We

showed that Trezor and KeepKey were secure against payment and address attacks, as

long as the user follows the protocol and verifies the data, whereas Ledger wallets were

prone to address attacks, due to divergence from our model. We expect this type of

evaluation to become an industry standard for hardware wallets, so that vendors can

improve the security and performance of their products by employing formal verification

methods, instead of empirical techniques.

Trezor and KeepKey. We investigated the implementation of the Trezor Model

T and KeepKey hardware wallets. Both products are implemented similarly, so we fo-

cused only on Trezor. Trezor provides a touch screen for both displaying information

and receiving input from the user. Based on the developer’s guide [Tre18b], we next

https://bitcoin.org/

Chapter 3. Formalization of Hardware Wallets 41

describe an abstraction of Trezor’s behavior under our model. During address genera-

tion, Trezor requires that the user connects the token to the client and unlocks it, i.e.,

the user initiates a session similar to our model definition. The client then retrieves the

address from the hardware token and displays it to the user. The hardware also displays

the address, as long as the “Show on Trezor” option is enabled. If this option is disabled,

then the user cannot verify the client’s address and is prone to an address attack, i.e.,

the client might display a malicious address which the user cannot cross-check with the

hardware wallet. However, the user manual does urge the user to always check the two

addresses [Tre18c] to avoid such attack scenarios. During transaction issuing, the user

again connects the device to the client and unlocks it. Then they initiate a transaction by

giving to the client the recipient’s address, and the payment and fee amounts, similarly

to our hybrid model setting. The client initiates the transaction signing process with the

hardware by providing this data, which the token then displays to the user for verifica-

tion. After the user has verified the transaction, the hardware communicates with the

client and signs the needed data. Again, given our high level investigation, this process

matches the communication steps that our model describes.

Ledger. We investigate the implementation of Ledger Nano S according to the user

manual [Led18] and our own analysis. Like Trezor, before performing any operation

the user is required to initiate a session by connecting the hardware to the client and

unlocking it. The hardware provides a small screen for displaying information and a pair

of two buttons for receiving commands from the user. During address generation, the

client displays the newly generated address to the user. However, there is no option

for the hardware wallet to also display the address,1 so that the user can cross-check

and verify the two. This is a clear divergence from our model and allows for address

attacks, e.g., by a corrupted client that displays a malicious address to the user. Trans-

action issuing is also similar to Trezor and captured by our model. The user inputs the

transaction’s data to the client, i.e., the recipient’s address and the payment and fee

amounts. The client forwards this data to the hardware, which displays it to the user

for verification. After receiving the user’s confirmation, the hardware interacts with the

client to sign and publish the transaction on the blockchain.

1Ledger issued a firmware update to address this issue and allow both the client and the hardware to
generate and display the address; however, the update process is manual and often neglected by users.

Chapter 4

Account Management in

Proof-of-Stake Ledgers

Blockchain protocols based on the Proof-of-Stake (PoS) paradigm depend— by nature

— on the active participation of stakeholders. Specifically, in PoS, the set of potentially

eligible parties is comprised of “stakeholders”, i.e., parties who own some amount of

the digital assets which are maintained by the ledger. Importantly, this set is open, i.e.,

parties can arbitrarily join and leave, while also remaining pseudonymous. Therefore,

the eligible party, dubbed the “minter”, is selected proportionally to its stake, i.e., the

amount of assets that it owns; the details of this selection process have resulted in a

number of PoS flavors and protocols.

However, the inherent duality of PoS digital assets, which can both be transferred

between entities and used in the protocol’s execution, diverges from the Proof-of-

Work (PoW) setting and might result in users abstaining from engaging in the PoS

mechanism. The stakeholders are expected to consistently follow the protocol’s ex-

ecution, by checking whether they are eligible to participate, and, in those cases and

within a specific time frame, engage in transaction processing per the PoS protocol’s

rules [KRDO17, CGMV18, GHM+17b, Vas14]. This feature is in sharp contrast with

PoW protocols, which offer a natural decoupling between the consensus layer par-

ticipants who generate blocks, i.e., the miners, and the users of the system who issue

transactions. Naturally, the set of users subsumes the miners, since e.g., the miners

collect fees and may also transact using them, and a substantial number of users do not

participate in the consensus protocol.

This dual nature of PoS assets raises two major considerations. First, some secret,

key-related information is frequently used on behalf of an asset, thus potentially reveal-

42

Chapter 4. Account Management in Proof-of-Stake Ledgers 43

ing critical information that weakens the asset’s security or increase the attack surface

against a user’s wallet. For instance, in the UTxO model (implemented by Bitcoin), the

public key which controls the assets is published only upon spending them; however,

PoS systems cannot adapt this model directly, since the public key is revealed when par-

ticipating in the protocol, i.e., (typically) before spending the funds. Therefore, using the

same key for all operations both increases the attack surface against it and introduces

quantum attacks, given that most implementations employ non-post-quantum secure

signature schemes. Second, a computational and availability requirement is imposed on

the stakeholders; therefore, in an environment where the majority of users are often

offline and abstain from the protocol’s execution, the security guarantees of the ledger

are weakened.

The above issues are well-known and have already been informally considered by

the blockchain community. For instance, some schemes propose a separation between

a staking and a payment key to address the first consideration1. The second consider-

ation, although seemingly unavoidable given the nature of PoS protocols, can be coun-

termeasured by enabling the delegation of the PoS protocol participation rights, i.e.,

block generation and transaction validation. This mechanism would allow users to or-

ganize in “stake pools”, i.e., consortiums managed by a single user, the pool “leader”,

who participates in the PoS protocol on behalf of all members. Stake pools bring effi-

ciency advantages, since the set of stake pool leaders is (typically) smaller than the entire

stakeholders’ set. Given that some PoS protocols [KRDO17] are based on multi-party

computation, introducing a committee of pool leaders substantially reduces the compu-

tational and communication complexity overhead.

Interestingly, PoS implementations don’t typically address these concerns compre-

hensively. On the one hand, “delegated PoS”, e.g., in Steem [Ste18] and EOS [Com18],

attempts to address the second consideration by enabling the voting of delegates. How-

ever, both systems use a single key for payment and voting, thus failing to address the first

consideration. On the other hand, systems like NEO [NEO18], as of September 2020,

enabled only 7 consensus nodes, 5 of which are controlled by a single entity, whereas

the only way of participating in the consensus mechanism is via central approval. Finally,

Decred [dec19] uses a ticketing system, i.e., stakeholders buy a ticket to participate in

the protocol, which is akin to using a separate key; however, it requires the locking of

funds while staking, i.e., it does not allow concurrent payments and staking, a major

blow to the system’s usability.

1One such discussion is available at: https://www.reddit.com/r/ethereum/comments/6idf2c

https://www.reddit.com/r/ethereum/comments/6idf2c

Chapter 4. Account Management in Proof-of-Stake Ledgers 44

Evidently, even though practical solutions do exist, a comprehensive and formal

treatment of a PoS system’s account management is less well-researched. In fact, due

to the very little systematization of the PoS wallets’ security and the lack of concise

guidelines, developers often resolve to ad hoc solutions. Given that PoS systems are

increasingly gaining momentum, it is imperative that this problem receives a thorough

and formal treatment. The results of this chapter fill this gap by acting as a guideline

for system architects and developers, aiming to better wallet implementations in terms

of safety, as well as enable robust designs with improved performance. A further im-

portant motivation behind our work is the current low level of decentralization in PoS

systems. As illustrated above, some projects are yet to allow stakeholders to practice

staking, opting instead for a closed set of block producing nodes. Even in cases where

stakeholders are arguably in control of their stake, they may choose their stake repre-

sentatives from a very narrow set of accounts; for instance, the EOS block producing

nodes are only 21 at any given time. Our work aims at alleviating such centralization ten-

dencies by enabling every user to either participate on their own or assign their stake

to any delegate of their choice. Consequently, the formalization of the PoS wallet is a

stepping stone for future research, given that the wallet is the gateway through which

users interact with the system, and a core element of the consensus protocol itself. As

a result, the composable nature of our framework allows future research to employ it

without composability concerns about its underlying implementation.

Related Work. Despite the large number of available PoS cryptocurrencies, formal

wallet research has been rather sparse and limited so far. A widely implemented wallet

standard is the HD Wallet Standard BIP32 [Wui18], based on the idea of deterministic

wallets [M+14]. Gutoski and Stebila [GS15] studied security in the presence of partial

key leakage, focusing on BIP32-compliant wallets, whereas Courtois et al. [CEV14] in-

vestigated the state of wallets and key management for Bitcoin [Nak08a]. We note that

these works focus on PoW-based systems and thus do not consider issues such as stake

delegation and protocol participation. In the PoS setting, a related work is the Bitshares’

delegation PoS mechanism [SL17], which, however, does not provide any formal model

or proof of security. Furthermore, a formal specification of Cardano’s wallet is also

available [DC18], although it focuses on the wallet’s implementation, rather than the

security properties and cryptographic model.

Chapter 4. Account Management in Proof-of-Stake Ledgers 45

Contributions. This chapter provides a formal framework of account management

and stake pool formation in PoS systems. In more detail, our contributions are as fol-

lows. First, we present the relevant desiderata of a PoS wallet, i.e., a set of requirements

general and flexible enough to be compatible with a number of different types of actors

in the system. Based on the desiderata, we provide a formal treatment of address and

asset management in the form of the ideal functionality ℱCoreWallet, which epitomizes a

PoS wallet’s core. Our analysis follows in the tradition of the UC Framework [Can01]

and is inspired by Canetti [Can03], which allows us to define our setting in a composable

way. While formalizing the addresses and their attributes, a nuanced and overlooked,

but equally important, notion emerges, namely address malleability. This property is also

of independent interest for any setting where an object, such as an identification tag, de-

pends on multiple attributes, such as keys or metadata. We describe various threat

models and protection levels, which range from fully malleable schemes to entirely non-

malleable. Given our theoretical foundations, we next define the wallet protocol, which

securely realizes ℱCoreWallet under standard cryptographic assumptions. The protocol

is highly parametric, thus offering flexibility in the wallet’s implementation. Following,

we describe an address construction mechanism, which both ensures a strong level of

security and covers the majority of our desiderata. Finally, we combine the core wallet

funcitonality with a generic PoS ledger to form a complete PoS wallet. Specifically, we

detail how the core wallet can participate in the PoS protocol and conduct payments,

stake pool registration, and stake delegation, and conclude with proving the security

of the stake-pooled variant of any PoS protocol, as well as describe various modes of

operation, which allow for enhanced privacy and security.

4.1 General Desiderata

Before presenting our framework, we first identify the properties that the wallet in a PoS

setting should offer. This investigation is an important step in understanding the restric-

tions in designing such systems, as well as evaluating the choices that a PoS protocol’s

designer should make. We organize the desiderata in three basic categories, based on

the related system component.

Addresses and Attributes. In a PoS system, each account manages a set of ad-

dresses. These addresses own a non-negative amount of cryptocurrency assets and

may contain various account metadata. Any PoS system should offer at minimum two

Chapter 4. Account Management in Proof-of-Stake Ledgers 46

basic operations for each user’s account: i) paying and ii) staking. Addresses, simply put,

are strings which have cryptocurrency balances associated with them. They may also

contain metadata, in the form of arbitrary attributes, which are useful for various system

operations. We identify the following desiderata for addresses in a PoS setting:

• Address Non-malleability: assuming access to an address and the ledger, an adver-

sary should not be able to construct a different address that shares only some of

the address’s attributes;

• Address Uniqueness: any two addresses with different attributes should be distinct;

• Short Addresses: addresses should be relatively short (in order to be usable and

storage efficient);

• Multiple Types of Addresses: construction of more than one type of addresses

should be allowed, with each type supporting a different subset of basic operations

(e.g., to ban some addresses from participating in consensus);

• Multiple Device Support: an account should be able to exist on multiple devices

that share no joint internal state;

• Address Recovery: an account should be able to identify its addresses, assuming

access to the ledger and the payment keys which it controls;

• Privacy and unlinkability: addresses should be indistinguishable from one another

and not publicly-linkable to their account.

Basic Account Operations. The two basic types of operations, i.e., payment and

staking, can be performed independently by two separate pieces of information, de-

noted by ℐ𝑝 and ℐ𝑠. The main advantage of this approach is that ℐ𝑝 is reserved only for

transferring funds, while staking operations require access only to ℐ𝑠. Another desir-

able result is the ability to recover all addresses given a master key, e.g., as implemented

by HDWallets [DFL19, GS15, Wui18]; this feature is particularly important in case the

equipment which hosts the wallet is lost. We summarize the above, with some addi-

tions, as follows:

• Account Master Key: there should exist a “master” piece of information, e.g., a

master seed, that can be used to generate all of the account’s management infor-

mation, i.e., its keys;

Chapter 4. Account Management in Proof-of-Stake Ledgers 47

• Staking and Payment Separation: compromising the staking operations should not

affect the payment operations (and vice-versa);

• Payment Key Information Safety: apart from a cryptographic hash, no other infor-

mation about the payment key ℐ𝑝 should be public prior to issuing a payment;

• Key Exposure Mitigation: ownership of the account’s assets and staking ability

should be recoverable, in case the staking information ℐ𝑠 is compromised.

Delegation Mechanism and Stake Pools. Delegation depends on the ability of

a user to give the rights over her stake to another user. This action should be distin-

guishable from other actions, like payment, in order to protect the users and facilitate

automatic reward schemes. Therefore, the delegation desiderata are as follows:

• Cost Effectiveness: stake delegation, re-delegation, or pool formation should be

cost effective;

• Chain Delegation Restriction: a limit to the number of re-delegations of the same

stake unit should be enforceable;

• Delegation Verification: participants in the system should be able to verify the status

of active delegations.

4.2 Address Malleability

We first introduce the notion of address malleability. We describe the adversarial threat

models that might exploit it, distill the components that define a malleability attack, and

organize this family of attacks based on threat levels. Next, we formalize malleability

via the malleability predicate and present a formal addressing of these attacks. Before

proceeding with the definition though, we first define the objects that underpin our

constructions and explore the malleability of addresses.

An account comprises of multiple addresses. An address is associated with a number

𝑔 of attributes, each identifying a property of the address, which are organized as follows:

i) public attributes are part of the address, so they are public and available without any

interaction with the account’s owner; ii) semi-public attributes are not public by default,

but become public when a transaction is issued, which spends some assets that the

address owns; iii) private attributes never become public. An attribute list 𝑙 is a vector
of 𝑔 attributes. In our work, the fundamental list of attributes is the address generation

Chapter 4. Account Management in Proof-of-Stake Ledgers 48

list 𝑙𝛼,𝐺𝑒𝑛, i.e., the list of all attributes used during the generation of an address 𝛼. In
this list, the sub-list of public attributes 𝑑 = (𝛿1,…,𝛿𝑝−1) contains the attributes which

are available by every party with access to the address. Of the remaining attributes, the

sub-list (𝛿𝑝,…,𝛿𝑖−1) contains the semi-public attributes, while (𝛿𝑖,…,𝛿𝑔) contains the
private attributes. The parameters 𝑝 and 𝑖 depend on the inner workings of the protocol
and the address generation scheme. For example, in Bitcoin, a typical address attribute

is the payment key pair (vkp,skp): vkp is used to verify signatures and is semi-public, its

hash is a public attribute, whereas skp, which signs transactions, is private.

Before exploring address malleability, a brief motivation is necessary. Address mal-

leability is similar to the preexisting malleability notions [DDN03] and is intrinsically tied

to address generation. Here, we treat it as a novel family of attack vectors due to the

complex structure of PoS addresses. Namely, our framework’s addresses encode in-

formation that extend beyond the simple transfer of assets and pertain to additional

functionalities, like staking. Therefore, to ensure the PoS protocol’s security, it is crucial

to prevent an adversary 𝒜 from constructing addresses on behalf of honest users, or

manipulating honestly generated addresses.

The goal of 𝒜 is to inflate their stake in the system by exploiting address malleability.

We remind that an address is associated with the payment information ℐ𝑝, which is

used to issue payments (and practically controls the assets) and the staking information

ℐ𝑠, which is used to participate in the PoS consensus protocol. 𝒜 attempts to forge an

address, for which it controls the staking informationℐ𝑠 without controlling the payment

information ℐ𝑝. This results in a stake “shift”, via which 𝒜 gains illegitimate control of

the staking rights of assets it does not own. Importantly, this forgery should take place

in such a way that the address’s honest owner does not easily recognize this stake shift,

unless actively looking for it.

Numerous types of adversaries would try to exploit this hazard. One such type

is a malicious stake pool leader. Such attacker would operate under the — natural

— assumption that the reward amount depends on the stake percentage, the staking

rights of which the pool controls. This assumption is amplified given incentives mech-

anisms [BKKS18] which mandate that larger stake pools receive greater rewards. By

deploying a generalized malleability attack, 𝒜 would artificially increase the amount of

its rewards (Figure 4.1). To deploy this attack, 𝒜 could intercept honestly-generated

addresses, which are exchanged between users, and replace themwith forged addresses

which are created on-the-fly. As long as 𝒜 remains unnoticed, it may be very profitable

to mount such attack on a broad network level.

Chapter 4. Account Management in Proof-of-Stake Ledgers 49

Figure 4.1: An example of a network-level, Man-in-the-Middle malleability attack. A

malicious pool changes on-the-fly the staking object of one of Bob’s addresses, such that

it points to Mallory’s stake pool. If Bob’s wallet does not identify the attack, Mallory has

successfully (but artificially) inflated its delegated stake. If the wallet does identify the

attack, it has to transfer the funds to a correct address and impose extra fees on Bob.

Following we identify multiple types of address malleability attacks. In all cases, we

assume that the adversary does not control the signing payment key skp, as this would
trivialize all attacks. An address created by 𝒜 without access to its payment key is called

forgery. A forgery is successful if funds that are sent to it can be spent and the wallet

accepts the forged address as its own, whereas it fails if funds that are sent to it can

never be spent and are, therefore, “burnt”.

Our analysis assumes two types of adversaries, depending on the level of information

which they access. First is the network adversary, who has access to the ledger, observes

the network, and can intercept addresses exchanged between parties. Second is the

targeting adversary, with access to the same information as the first, but also knows the

set of past transactions issued by the “victim”, i.e., the honest user for which it attempts

to produce a forgery. We stress that the assumptions for the targeting adversary are

much stronger compared to the network adversary.

The malleability levels presented next range from full malleability, i.e., when no inher-

ent protection against malleability attacks exists, to non malleability, i.e., where an adver-

sary cannot create a successful forgery without access to the address’s private attributes.

Chapter 4. Account Management in Proof-of-Stake Ledgers 50

Defining the intermediate levels allows us to construct various address schemes, which

are suitable for different needs of real world projects. For example, a fully malleable ad-

dress is typically short and suitable for performance-oriented applications. In contrast,

a security-oriented project would aim for the higher levels of malleability protection.

The malleability levels are organized around the following three properties: i) the type

of adversary, i.e., 𝒜 is at the network level or has targeted access to the user’s wal-

let; ii) self-verification, i.e., whether a wallet can recognize a forgery for one of its own

payment keys; iii) cross-verification, i.e., whether a wallet can identify a forgery for an

address which it does not own. Belowwe describe the malleability levels and summarize

them in Table 4.1:

• Level 1, Full Malleability: This level enables successful forgeries from both network

and targeting adversaries. A wallet checks only the payment information, so it

accepts the forgery without recognizing it as such, while also both spending from

and sending funds to forgeries.

• Level 2, Full Verifiable Malleability: Again, both types of adversaries, i.e., network

and targeting, can create forgeries. However, during recovery, the wallet iden-

tifies forgeries and rejects them; we note that a “hacked” wallet can spend the

assets owned by such forgery. Also all wallets, including honest ones, may send

funds to forgeries.

• Level 3, A Posteriori Malleability: This level prohibits network adversaries. Specifi-

cally, if such adversary produces a forgery, any transaction which spends from the

forgery is rejected. However, targeting adversaries can create successful forgeries

as before.

• Level 4, A Posteriori Verifiable Malleability: This level is similar to Level 3, with the ad-

dition that an honest wallet can identify and reject forgeries of its own addresses,

as in Level 2.

• Level 5, “Sink” Malleability: Both network and targeting adversaries are prohibited.

Thus, all forgeries are rejected by the wallet and its funds are burnt. Intuitively,

considering transactions as a graph, where the graph’s nodes are the addresses

and its edges are transactions, forgeries are “sinks” which trap all funds sent to

them. However, a wallet still cannot identify a forgery of an address that it does

not own.

Chapter 4. Account Management in Proof-of-Stake Ledgers 51

Level of

Malleability

Network

protection

Targeting

protection

Self-

verification

Cross-

verification

1 - Full 7 7 7 7

2 - Verifiable 7 7 3 7

3 - A posteriori 3 7 7 7

4 - A posteriori

verifiable
3 7 3 7

5 - Sink 3 3 3 7

6 - None 3 3 3 3

Table 4.1: Comparison of the malleability levels.

• Level 6, NonMalleability: The highest level of protection against malleability, where

a forgery is rejected by every wallet, i.e., given only an address anybody can iden-

tify whether it is honestly-generated or a forgery. Therefore, all transactions that

interact in any way with a forgery are rejected.

We now formalize address malleability with the predicate 𝑀 . The predicate returns

1 or 0 to denote whether an address is valid or not. Here, a valid address is either

honestly-generated or a successful forgery, i.e., it is an address that the wallet accepts.

The first parameter of the predicate is the set 𝐿𝒫 of all created addresses and their

attributes for a party 𝒫; this parameter is necessary, so that the predicate compares the

given address with the honestly generated ones. The second parameter is the auxiliary

information aux𝑀 , which takes the values recover issue or verify this information is used

to instantiate different modes of the predicate and allows it to adjust its actions, thus

making it more versatile. The third parameter is the address under question.

Full Malleability. This predicate does not allow the ideal functionality to perform

any malleability checks when issuing a transaction. During recovery and verification, it

first identifies the list of public attributes 𝑑, then outputs 1 if these attributes have been

Chapter 4. Account Management in Proof-of-Stake Ledgers 52

used in at least one address that the wallet controls. Intuitively, a forgery can be con-

structed by using public attributes from other addresses that the wallet has created. In

the real-world, the wallet accepts an address as long as its payment key is controlled by

the wallet. In a fully malleable construction, the predicate is instantiated with 𝑀FM de-

scribed in Algorithm 2; the function parsePubAttrs denotes the public attribute parsing

of an address.

Algorithm 2 The fully malleable predicate. The inputs are: i) a list of tuples of

previously-generated addresses and their attributes, ii) auxiliary information on the wal-

let’s operation, iii) the address under question.

function 𝑀FM(𝐿𝑃 ,aux𝑀 ,𝛼)
switch aux𝑀 do

case issue
return 1

case verify OR recover
𝑑 = parsePubAttrs(𝛼)
for 𝛿 ∈ 𝑑 do

if ∀𝛼′ ∈ 𝐿𝑃 ,𝑑′ = parsePubAttrs(𝛼′): 𝛿 ∉ 𝑑′ then

return 0 ▷ 𝛿 not registered detected

end if

end for

return 1

end function

A Posteriori Malleability. In an a posteriori malleable construction, the predicate

first identifies the list 𝑑 of public attributes of the address𝛼. Then, for each such attribute
𝛿, it checks: i) if there exists an issued transaction 𝜏 = (Θ,𝛼𝑠,𝛼𝑟,𝑚), such that the

public attributes of 𝛼𝑠 include 𝛿; ii) if there exists an address that the wallet has created,
such that 𝛿 is part of its public attributes. If both checks fail the predicate returns 0,
otherwise 1. Intuitively, this construction enables malleability only for addresses whose

payment key has been previously used and for which all public attributes have been used

in other addresses. Therefore, as long as the payment key of the address has not been

used, the scheme provides non-malleability. The a posteriori malleable construction,

instantiated with the predicate 𝑀𝕋
PM which is parameterized by the list of all transactions

𝕋, is described in Algorithm 3.

Chapter 4. Account Management in Proof-of-Stake Ledgers 53

Algorithm 3 The a posteriori malleability predicate. The inputs are: i) a list of tuples

of previously-generated addresses and their attributes, ii) auxiliary information on the

wallet’s operation, iii) the address under question.

function 𝑀𝕋
PM(𝐿𝑃 ,aux𝑀 ,𝛼)

switch aux𝑀 do

case issue
return 1

case verify OR recover
𝑑 = parsePubAttrs(𝛼)
for 𝛿 ∈ 𝑑 do

if ∀𝛼′ ∈ 𝐿𝑃 ,𝑑′ = parsePubAttrs(𝛼′): 𝛿 ∉ 𝑑′ then

return 0

end if

if ∀(Θ,𝛼𝑠,𝛼𝑟,𝑚) ∈ 𝕋,𝑑𝑠 = parsePubAttrs(𝛼𝑠): 𝛿 ∉ 𝑑𝑠 then

return 0

end if

end for

return 1

end function

Chapter 4. Account Management in Proof-of-Stake Ledgers 54

Sink Malleability. Intuitively, a sink malleable address generation algorithm requires

that only the owner of the honest wallet can create addresses for payment keys of

the wallet. This is expressed by differentiating the behavior depending on the auxiliary

information. If aux𝑀 pertains to the issuing of transactions, the predicate returns 1,
i.e., accepts all addresses to which the wallet tries to send funds. For all other cases, it

requires that the address is honestly generated. The sink malleable construction, with

the predicate 𝑀SM, is described in Algorithm 4.

Algorithm 4 The sink malleable predicate. The inputs are: i) a list of tuples of

previously-generated addresses and their attributes, ii) auxiliary information on the wal-

let’s operation, iii) the address under question.

function 𝑀SM(𝐿𝑃 ,aux𝑀 ,𝛼)
switch aux𝑀 do

case issue
return 1

case verify OR recover
if ∃𝑙𝛼 ∶ (𝛼, 𝑙𝛼) ∈ 𝐿𝑃 then

return 1 ▷ 𝛼 is registered

end if

return 0 ▷ No 𝛼 is registered

end function

Non Malleability. The fully non malleable predicate behaves similarly to the sink

malleable case, although it also checks transaction issuance. Specifically, when aux𝑀 is

issue it verifies that the recipient’s address has been generated by some party via the

honest process. Therefore, upon issuing a transaction, the malleability predicate checks

the address of the receiver, to identify whether it is legitimate, so if the transaction

is acceptable. Similarly, when verifying a transaction, the wallet identifies whether the

sender’s address has been properly constructed. The fully non-malleable construction,

instantiated with the predicate 𝑀NM, is described in Algorithm 5.

4.3 The Core-Wallet Functionality

The major contribution of this chapter is the definition of the ideal functionality of the

core wallet. The goal of this definition is to distill, in a concise way, a formal model of

Chapter 4. Account Management in Proof-of-Stake Ledgers 55

Algorithm 5 The fully non-malleable predicate. The inputs are: i) a list of tuples of

previously-generated addresses and their attributes, ii) auxiliary information on the wal-

let’s operation, iii) the address under question.

function 𝑀NM(𝐿𝑃 ,aux𝑀 ,𝛼)
switch aux𝑀 do

case issue
if ∃𝑃 ′ such that ∃𝑙𝛼 ∶ (𝛼, 𝑙𝛼) ∈ 𝐿𝑃 ′ then

return 1

end if

case verify OR recover
if ∃𝑙𝛼 ∶ (𝛼, 𝑙𝛼) ∈ 𝐿𝑃 then

return 1

end if

return 0

end function

the properties of a PoS wallet.

Our ideal functionality ℱCoreWallet is inspired by Canetti [Can03]. ℱCoreWallet (Fig-

ures 4.2 and 4.3) interacts with the ideal adversary 𝒮 and a set of parties denoted by

ℙ and is parameterized by the predicate 𝑀(⋅, ⋅, ⋅) → {0,1}. It also keeps the, initially

empty lists, 𝑆 of staking actions and 𝒯 of transactions. We assume, without loss of

generality, that, given a list of attributes 𝑙𝛼,𝐺𝑒𝑛 = (𝛿1,…,𝛿𝑔), 𝛿1 is the staking key’s in-

formation and 𝛿2 is a recovery tag (which will be further investigated in the upcoming

Section 4.6). We remind that access to an address implies access to its public attributes

𝑑 = (𝛿1,…,𝛿𝑝−1) and, given the ledger, access to its semi-public attributes (𝛿𝑝,…,𝛿𝑖−1)
as well.

The functionality distinguishes the addresses in three types: base, pointer, and exile.

As we will show in Section 4.6, each type has a specific utility; briefly, base addresses

help bootstrap a wallet, pointer addresses are shorter and aim at better performance,

and exile addresses are withdrawn from the PoS protocol’s execution.

Remark. Although ℱCoreWallet offers a suitable security definition, for our requirements, as

it relies on the standard security properties of digital signatures and the address generation

properties to be described in Section 4.5.1, it does not offer any type of forward security in

the sense of Bellare and Miner [BM99]. However, protocols which require stronger security

properties for their building blocks do exist. For instance, Ouroboros Praos [DGKR18] relies

Chapter 4. Account Management in Proof-of-Stake Ledgers 56

Initialization: Upon receiving (Init,sid) from 𝒫 ∈ ℙ, forward it to 𝒮 and wait for

(InitOk,sid). Then initialize the empty lists 𝐿𝒫 of addresses and attribute lists

and 𝐾𝒫 of staking keys, and send (InitOk,sid) to 𝒫.

Address Generation: Upon receiving (GenerateAddress,sid,aux) from 𝒫 ∈ ℙ,
forward it to the 𝒮. Upon receiving (Address,sid,𝛼, 𝑙𝛼) from 𝒮, parse 𝑙𝛼 as

(𝛿1,…,𝛿𝑔) and ∀𝒫′ ∈ ℙ check if ∀(𝛼′, (𝛿′
1,…,𝛿′

𝑔)) ∈ 𝐿𝒫′ it holds that 𝛼 ≠ 𝛼′,

𝛿′
2 ≠ 𝛿2, and ∀𝑗 ∈ [𝑖,…,𝑔] ∶ 𝛿′

𝑗 ≠ 𝛿𝑗, i.e., the address, recovery tag, and private

attributes are unique. If so, then:

1. if aux = (base), check that ∀(𝛼′, (𝛿′
1,…,𝛿′

𝑔)) ∈ 𝐿𝒫 ∶ 𝛿′
1 ≠ 𝛿1, i.e., the new

staking key is unique,

2. else if aux = (pointer,vks), check that 𝛿1 = vks,

3. else if aux = (exile), check that 𝛿1 = ⊥.

If the checks hold or 𝒫 is corrupted, then insert (𝛼, 𝑙𝛼) to 𝐿𝒫 and return

(Address,sid,𝛼) to 𝒫. If aux = (base) also insert 𝛿1 to 𝐾𝒫 and return

(StakingKey,sid, 𝛿1) to 𝒫.

Wallet Recovery: Upon receiving (RecoverWallet,sid, 𝑖) from 𝒫 ∈ ℙ, for the first
𝑖 elements in 𝐿𝒫 return (Tag,sid, 𝛿2).
Address Recovery: Upon receiving amessage (RecoverAddr,sid,𝛼, 𝑖) from a party

𝒫 ∈ ℙ, if (𝛼, 𝑙) is one of the first 𝑖 elements of 𝐿𝒫 or 𝑀(𝐿𝒫, recover,𝛼) = 1,
return (RecoveredAddr,sid,𝛼).
Issue Transaction: By receiving from 𝒫 ∈ ℙ the message (Pay,sid,Θ,𝛼𝑠,𝛼𝑟,𝑚), if
∃𝑙𝛼 ∶ (𝛼𝑠, 𝑙𝛼) ∈ 𝐿𝒫 forward it to 𝒮. Upon receiving (Transaction,sid, 𝜏 ,𝜎) from
𝒮, such that 𝜏 = (Θ,𝛼𝑠,𝛼𝑟,𝑚), check if ∀(𝜏 ′,𝜎′, 𝑏′) ∈ 𝒯 ∶ 𝜎′ ≠ 𝜎, if (𝜏,𝜎,0) ∉
𝒯, and if 𝑀(𝐿𝒫, issue,𝛼𝑟) = 1. If all checks hold, then insert (𝜏,𝜎,1) to 𝒯 and

return (Transaction,sid, 𝜏 ,𝜎).

Functionality ℱ𝑀
CoreWallet

Figure 4.2: The PoS core-wallet ideal functionality. (Part 1)

Chapter 4. Account Management in Proof-of-Stake Ledgers 57

Verify Transaction: Upon receiving from 𝒫 ∈ ℙ the message (VerifyPay,sid, 𝜏 ,𝜎),
with 𝜏 = (Θ,𝛼𝑠,𝛼𝑟,𝑚) for a metadata string 𝑚, forward it to 𝒮 and wait for a

reply message (VerifiedPay,sid, 𝜏 ,𝜎,𝜙). Then:

• if 𝑀(𝐿𝒫,verify,𝛼𝑠) = 0, set 𝑓 = 0

• else if (𝜏,𝜎,1) ∈ 𝒯, set 𝑓 = 1

• else, if 𝒫 is not corrupted and (𝜏,𝜎,1) ∉ 𝒯, set 𝑓 = 0 and insert (𝜏,𝜎,0)
to 𝒯

• else, if (Θ,𝛼𝑠,𝛼𝑟,𝑚,𝜎,𝑏) ∈ 𝒯, set 𝑓 = 𝑏

• else, set 𝑓 = 𝜙.

Finally, send (VerifiedPay,sid, 𝜏 ,𝜎,𝑓) to 𝒫.

Issue Staking: Upon receiving (Stake,sid, 𝜏𝑠) from𝒫, such that 𝜏𝑠 = (vks,𝑚) for a
metadata string𝑚, forward the message to 𝒮. Upon receiving (Staked,sid, 𝜏𝑠,𝜎)
from 𝒮, if ∀(𝜏 ′

𝑠,𝜎′, 𝑏′) ∈ 𝑆 ∶ 𝜎′ ≠ 𝜎, (𝜏𝑠,𝜎,0) ∉ 𝑆, and vks ∈ 𝐾𝒫, then add

(𝜏𝑠,𝜎,1) to 𝑆 and return (Staked,sid, 𝜏𝑠,𝜎) to 𝒫.

Verify Staking: Upon receiving from 𝒫 ∈ ℙ the message (VerifyStake,sid, 𝜏𝑠,𝜎),
with 𝜏𝑠 = (vks,𝑚), forward it to 𝒮 and wait for (VerifiedStake,sid, 𝜏𝑠,𝜎,𝜙).
Then find 𝒫𝑠, such that vks ∈ 𝐾𝒫𝑠

, and:

• if (𝜏𝑠,𝜎,1) ∈ 𝑆, set 𝑓 = 1

• else if 𝒫𝑠 is not corrupted and (𝜏𝑠,𝜎,1) ∉ 𝑆, set 𝑓 = 0 and insert (𝜏𝑠,𝜎,0)
to 𝑆

• else if exists an entry (𝜏𝑠,𝜎,𝑓 ′) ∈ 𝑆, set 𝑓 = 𝑓 ′

• else set 𝑓 = 𝜙 and insert (𝜏𝑠,𝜎,𝜙) to 𝑆.

Finally, return (VerifiedStake,sid, 𝜏𝑠,𝜎,𝑓) to 𝒫.

Functionality ℱ𝑀
CoreWallet

Figure 4.3: The PoS core-wallet ideal functionality. (Part 2)

Chapter 4. Account Management in Proof-of-Stake Ledgers 58

on a forward secure digital signature scheme, among other primitives, to provide security guar-

antees against fully-adaptive corruption in a semi-synchronous setting. Additionally, protocols

like Cryptonote [VS13] allow an arbitrary number of parties to operate the address generation

interface, instead of restricting it to the wallet’s owner.

4.4 The Generic Core-Wallet Protocol

In this section we describe the protocol 𝜋CoreWallet (Figures 4.4 and 4.5), which real-

izes the core-wallet ideal functionality. The protocol interacts with the party 𝒫𝑜, i.e.,

the wallet’s owner, and maintains the, initially empty, lists 𝑃𝐾 of payment keys and

addresses and 𝑆𝐾 of staking keys. Additionally, it uses a number of functions for differ-

ent processes. parsePubAttrs returns the list of public attributes [vks,wrt,aux] given an
address. The HKeyGen and RTagGen functions take effect during address generation

and are analyzed next in Section 4.5.1. Finally, we assume the existence of a signature

scheme Σ.

For this definition, we ease notation by dropping the generic attribute notation 𝛿𝑖
and instead using names representative of each attribute. Therefore, the staking and

the payment information are the staking key (vks,sks) and the payment key (vkp,skp)
respectively. The list of public attributes 𝑑 = [vks,wrt,aux] comprises of the public

staking key, the recovery tag, and the address’s auxiliary information, which identifies

its type. The semi-public attribute is the public payment key vkp, whereas the private

attributes are the private keys sks and skp.

4.5 Security Analysis

The security of 𝜋CoreWallet is given w.r.t. ℱ𝑀
CoreWallet, the signature scheme’s Existential

Unforgeability under Adaptive Chosen Message Attacks (EUF-CMA) property, and a

number of properties of our custom algorithms. Therefore, before presenting the anal-

ysis for ℱ𝑀
CoreWallet parameterized with the predicate 𝑀SM, we introduce the properties

of the address and metadata generation algorithms.

4.5.1 Properties of the Generation Algorithms

Briefly, GenAddr is the address generation algorithm which, given an attribute list, re-

turns an address. This algorithm is implemented in Section 4.6, although 𝜋CoreWallet can

Chapter 4. Account Management in Proof-of-Stake Ledgers 59

Initialization: Upon receiving the message (Init,sid) from 𝒫𝑜, set msk
$←− {0,1}𝜅

and return (InitOk,sid) to 𝒫𝑜.

Address Generation: Upon receiving (GenerateAddress,sid,aux) from 𝒫𝑜, com-

pute the index and child attributes as follows: i) pick an 𝑖 from the set 𝕀; ii) com-

pute the key pair (vkp𝑐,skp𝑐) =
HKeyGen(⟨msk,payment, 𝑖⟩); iii) compute the tag wrt = RTagGen(vkp𝑐). Also:

• if aux = (base), compute (vks𝑐,sks𝑐) = HKeyGen(⟨msk,staking, 𝑖⟩);

• else if aux = (pointer,vks), find (vks𝑐,sks𝑐) ∈ 𝐾 ∶ vks = vks𝑐;

• else if aux = (exile), set (vks𝑐,sks𝑐) = (⊥,⊥).

Then insert the list 𝑙𝛼 = ⟨vks𝑐,wrt,aux,vkp𝑐,skp𝑐,sks𝑐⟩ to 𝐿, create the address
𝛼 = GenAddr(⟨aux,vks𝑐,vkp𝑐,wrt⟩), and insert the tuple ⟨𝛼,(vkp𝑐,skp𝑐)⟩ to

𝑃𝐾. Then return (Address,sid,𝛼) to 𝒫𝑜. If aux = base also insert (vks𝑐,sks𝑐)
to 𝑆𝐾 and send the message (StakingKey,sid,vks𝑐) to 𝒫𝑜.
Wallet Recovery: Upon receiving (RecoverWallet,sid, 𝑖𝑚𝑎𝑥) from 𝒫𝑜, ∀𝑖 ∈
𝕀 ∶ 𝑖 < 𝑖𝑚𝑎𝑥 set (vkp𝑖,skp𝑖) = HKeyGen(⟨msk,payment, 𝑖⟩) and return

(Tag,sid,RTagGen(vkp𝑖)).
Address Recovery: Upon receiving from 𝒫𝑜 the message

(RecoverAddr,sid,𝛼, 𝑖𝑚𝑎𝑥), parse the address’s attributes (vks,wrt,aux) =
𝑝𝑎𝑟𝑠𝑒𝑃 𝑢𝑏𝐴𝑡𝑡𝑟𝑠(𝛼). If exists 𝑖 ∈ 𝕀 ∶ 𝑖 < 𝑖𝑚𝑎𝑥, where (vkp𝑖,skp𝑖) =
HKeyGen(⟨msk,payment, 𝑖⟩) and RTagGen(vkp𝑖) = wrt, return

(RecoveredAddr,sid,𝛼).
Issue Transaction: Upon receiving from 𝒫𝑜 the message

(Pay,sid,Θ,𝛼𝑠,𝛼𝑟,𝑚), find ⟨𝛼𝑠, (vkp,skp)⟩ ∈ 𝑃𝐾 and send the message

(Transaction,sid, 𝜏 ,Sign(skp, 𝜏)) to 𝒫𝑜, such that 𝜏 = (Θ,𝛼𝑠,𝛼𝑟,𝑚).

Protocol 𝜋CoreWallet

Figure 4.4: The PoS core-wallet protocol. (Part 1)

Chapter 4. Account Management in Proof-of-Stake Ledgers 60

Verify Transaction: Upon receiving the message (VerifyPay,sid, 𝜏 ,𝜎)
from 𝒫𝑜, where 𝜏 = (Θ,𝛼𝑠,𝛼𝑟,𝑚) for some metadata string

𝑚, find an entry ⟨𝛼𝑠, (vkp,skp)⟩ in 𝑃𝐾 and return the message

(VerifiedPay,sid, 𝜏 ,𝜎,Verify(𝜏,𝜎,vkp)) to 𝒫𝑜.

Issue Staking: Upon receiving (Stake,sid, 𝜏𝑠) from 𝒫𝑜 such that 𝜏𝑠 =
(vks,𝑚) for metadata 𝑚, find an entry (vks,sks) ∈ 𝑆𝐾 and return

(Staked,sid, 𝜏𝑠,Sign(sks, 𝜏𝑠)).
Verify Staking: Upon receiving the message (VerifyStake,sid, 𝜏𝑠,𝜎) from the party

𝒫𝑜, where 𝜏𝑠 = (vks,𝑚) for metadata 𝑚, find (vks,sks) ∈ 𝑆𝐾 and return the

message (VerifiedStake,sid, 𝜏𝑠,𝜎,Verify(𝜏𝑠,𝜎,sks)).

Protocol 𝜋CoreWallet

Figure 4.5: The PoS core-wallet protocol. (Part 2)

be parameterized with any address generation scheme which offers the necessary prop-

erties.

Specifically, address generation should be collision resistant, i.e., analogously to hash

functions, it should be infeasible for an adversary to produce the same address for dif-

ferent attribute lists, cf. Definition 9. Also address generation should be attribute non-

malleable, i.e., it should be infeasible for an adversary to generate valid addresses for a

payment key without access to the entire attribute list (including the private attributes),

cf. Definition 10. In addition, we assume that HKeyGen(⋅) is hierarchical, i.e., the distri-
bution of produced keys is indistinguishable from that of KeyGen, cf. Definition 11, and

RTagGen(⋅) is collision resistant, thus ensuring that the recovery tags are both unique

(with overwhelming probability) and deterministically computable.

Address and Attribute Generation Properties. In order to prove the security

of our protocol, the address generation algorithm GenAddr ∶ Δ1 ×…×Δ𝑔 → 𝔸 should

offer the following properties.

Definition 9 (Address collision resistance). Analogously to hash functions (cf. Defini-

tion 1), GenAddr is collision resistant when it is infeasible to produce two different attribute

lists 𝑙𝑖 = (𝛿𝑖
1,…,𝛿𝑖

𝑔) for 𝑖 ∈ {1,2}, i.e., they differ in at least one attribute like ∃𝑗 ∈ [1,𝑔]:
𝛿1

𝑗 ≠ 𝛿2
𝑗 , such that GenAddr(𝑙1) = GenAddr(𝑙2), after running GenAddr(⋅) a polynomial

number of times.

Chapter 4. Account Management in Proof-of-Stake Ledgers 61

Similarly, we assume the existence of an algorithm GenMeta ∶ Δ1 × … × Δ𝑔 →
{0,1}𝑝(𝜅) for the generation of the metadata 𝑚 associated with the address. Before

describing extra properties for GenAddr, we introduce the following property for the

GenMeta function.

Metadata extraction resistance. For a challenge address 𝛼 with attribute list 𝑙,
it is intractable for the adversary that is given 𝛼 and the public attributes to generate

the metadata information 𝑚, such that GenMeta(𝑙) = 𝑚, even with polynomial number

of address generation and metadata queries, upon arbitrary choices of public attributes

(𝛿′
𝑖,…,𝛿′

𝑔). We say that GenMeta algorithm has metadata extraction resistance with

respect to private attributes (𝛿1,…,𝛿𝑖−1) from an attribute list 𝑙 = (𝛿1,…,𝛿𝑔), and ad-

dress generation algorithm GenAddr, when for every attribute list 𝑙 ∈ Δ1 ×…×Δ𝑔, and

a fixed index 𝑖, such that the private list of attributes is 𝑑 = (𝛿1,…,𝛿𝑖−1), it holds that:

Pr
⎡
⎢⎢
⎣

𝑙 = (𝛿1,…,𝛿𝑔),
𝛼 ← GenAddr(𝑙),

𝑚′ ← 𝒜GenAddr𝑑(⋅)(𝛿𝑖,…,𝛿𝑔)
∶ GenMeta(𝑙) = 𝑚′

⎤
⎥⎥
⎦

≤ negl(𝜅)

where the probabilities are computed on the used randomness, the values of 𝑙 and every
PPT adversary 𝒜.

Definition 10 (Non-malleable attribute address generation). Let ℒ be a distribution of

attribute lists, such that dom(ℒ) = Δ1 ×…×Δ𝑔, and that 𝛿1,…,𝛿𝑖, i.e., the first attributes

of the attribute list 𝑙 ← dom(ℒ), relate to a property over which we define non-malleability.

Even with access to the metadata of the address, i.e., the semi-public attributes, it is infea-

sible for the adversary to generate valid addresses, i.e., acceptable addresses with the same

verification payment key, from 𝛼, without accessing the attribute list, including the private

attributes. Concretely, given Addrs, i.e., the list of addresses queried by 𝒜 to the oracle

GenAddr𝑑(⋅), it holds that:

Pr
⎡
⎢⎢
⎣

𝑙 = (𝛿1,…,𝛿𝑔),
𝛼 ← GenAddr(𝑙),

(𝛼′, 𝛿′
𝑖,…,𝛿′

𝑔) ← 𝒜GenAddr𝑑(⋅),GenMeta𝑑(⋅)(𝛿𝑖,…,𝛿𝑔)
∶

(GenAddr𝑑(𝛿′
𝑖,…,𝛿′

𝑔) = 𝛼′)∧
(𝛼′ ≠ 𝛼)∧

(𝛼′ ∉ Addrs)

⎤
⎥⎥
⎦

≤ negl(𝜅)

for probabilities computed over the randomness in GenAddr algorithm, every PPT adversary

𝒜 and the values of 𝑙.

Chapter 4. Account Management in Proof-of-Stake Ledgers 62

Hierarchical KeyGeneration Properties. Wenow define the hierarchical prop-

erty of the key generation function HKeyGen(⋅), which is used by the core wallet pro-

tocol 𝜋CoreWallet. Intuitively, this allows us to use HKeyGen in order to securely and

deterministically produce keys for indexes, instead of using the KeyGen function of Σ.

Definition 11 (Hierarchical Key Generation). Assume a signature scheme Σ. A key

generation function HKeyGen(⋅) is hierarchical for Σ if, for all parameters 𝑖, the distribution

of keys produced by HKeyGen(𝑖) is computationally indistinguishable from the distribution

of keys produced by KeyGen.

4.5.2 Security in the Sink Malleable Setting

We now describe the core theorem of this chapter. Here, the ideal functionality, pa-

rameterized with the sink malleability predicate 𝑀SM, is realized by the protocol that

employs the sink malleable address generation function. It also uses tag and hierarchical

key construction functions which present the above necessary properties.

Theorem 2. Let the generic protocol 𝜋CoreWallet be parameterized by a signature scheme

Σ and the RTagGen, HKeyGen, and GenAddr functions. Then 𝜋CoreWallet securely realizes

the ideal functionality ℱ𝑀SM
CoreWallet if and only if Σ is EUF-CMA, GenAddr is collision resistant

and attribute non-malleable (cf. Definitions 9 and 10), RTagGen is collision resistant (cf.

Definition 1), and HKeyGen is hierarchical for Σ (cf. Definition 11).

Proof. The proof is constructed in the UC Framework, therefore it is a simulation based

proof. As such, we will show that the environment 𝒵 cannot efficiently distinguish be-

tween two executions, the ideal and the real. Here, the simulator 𝒮 interacts with the

ideal functionality ℱ𝑀SM
CoreWallet in the ideal execution, whereas 𝒜 interacts with 𝜋CoreWallet

in the real execution. We divide the proof in the “if” and “only if” parts. First, the “if” part

shows that if 𝜋CoreWallet does securely realize the ideal functionality ℱ𝑀SM
CoreWallet, when in-

stantiated with a EUF-CMA signature scheme Σ, a collision resistant and non-malleable

address generation schemeGenAddr, and suitableRTagGen,HKeyGen functions at least
one of the conditions is violated. The “only if” part shows that, if either of the functions’

properties does not hold, e.g., if Σ is not EUF-CMA or GenAddr is either not collision
resistant or non-malleable, then 𝜋CoreWallet does not securely realize the functionality

ℱ𝑀SM
CoreWallet, i.e., the environment is able to distinguish between the two executions.

Let us now provide the construction for the simulator 𝒮, which will be useful in the
“if” part of the proof.

Chapter 4. Account Management in Proof-of-Stake Ledgers 63

The simulator 𝒮. The simulator 𝒮 runs internally a copy of the adversary 𝒜, and

keeps a table TABLE of tuples (⋅, ⋅, ⋅, ⋅) of respectively addresses, attributes, and staking
key pairs. Also it performs as follows:

• Any inputs received from the environment 𝒵, forward them to the internal copy

of 𝒜. Moreover, forward any output from 𝒜 to 𝒵;

• Initialization: Upon receiving (Initialise,sid) from the functionalityℱCoreWallet, com-

pute a dummy master key msk
$←− {0,1}𝜅 and return (InitialiseOk,sid);

• Address Generation: Upon receiving the message (GenerateAddress,sid,aux)
from ℱCoreWallet, do similarly to protocol 𝜋CoreWallet, that is:

– set 𝑖 ← 𝕀,

– set the key pair (vkp𝑐,skp𝑐) = HKeyGen(⟨msk,payment, 𝑖⟩),

– set the tag wrt = RTagGen(⟨msk, 𝑖⟩),

and do the following:

– if aux = (base) compute (vks𝑐,sks𝑐) = HKeyGen(⟨msk,staking, 𝑖⟩) and set

𝛽 = vks𝑐;

– if aux = (pointer,vks), set 𝛽 = vks;

– if aux = (exile), set 𝛽 = ⊥.

Then compute 𝛼 = GenAddr(⟨aux,𝛽,vkp𝑐,wrt⟩) and set its attribute list 𝑙𝛼 =
⟨vks𝑐,wrt,aux,vkp𝑐,skp𝑐,sks𝑐⟩. Then record the tuple (𝛼, 𝑙𝛼,𝛽,skp𝑐) toTABLE.
Finally, hand to ℱCoreWallet the message (Address,sid,𝛼, 𝑙𝛼);

• Issue Transaction: Upon receiving (Pay,sid,Θ,𝛼𝑠,𝛼𝑟,𝑚) find a record 𝑙𝛼 ∈ TABLE
that contains the sender’s address 𝛼𝑠 as the first item. Then generate the signa-

ture 𝜎 for the transaction 𝜏 , such that 𝜏 = (Θ,𝛼𝑠,𝛼𝑟,𝑚), using Sign and the

payment key of 𝛼𝑠, and hand the message (Transaction,sid, 𝜏 ,𝜎) to the function-

ality ℱCoreWallet. Note that with the attribute list 𝑙𝛼, 𝒮 can properly generate 𝜎.
Moreover such record is expected to be in TABLE, since the functionality allows
the issuing of transactions by properly generated addresses by checking on the

list 𝐿𝑃 before sending to 𝒮;

Chapter 4. Account Management in Proof-of-Stake Ledgers 64

• Verify Transaction: Upon receiving the message (VerifyPayment,sid, 𝜏 ,𝜎) from

ℱCoreWallet, find the recorded verification key vkp𝑐 for the sender’s address 𝛼𝑠 in

𝜏 = (Θ,𝛼𝑠,𝛼𝑟,𝑚) by looking up 𝑙𝛼 for 𝛼𝑠 in TABLE, and use Verify to retrieve

the verification bit 𝜙. Then return (VerifiedPayment,sid, 𝜏 ,𝜎,𝜙) to ℱCoreWallet;

• Issue Staking: Similarly to issuing a payment, upon receiving (Stake,sid, 𝜏𝑠), such
that 𝜏𝑠 = (vkp,𝑚), find the correspondent staking key skp and use Sign to gen-

erate the signature 𝜎, then hand (Staked,sid, 𝜏𝑠,𝜎) to ℱCoreWallet;

• Verify Staking: As before, upon receiving the message (VerifyStaking,sid, 𝜏𝑠,𝜎),
find the staking key that pertains to 𝜏𝑠, use Verify to retrieve the verification bit

𝜙, and send the message (VerifiedPayment,sid, 𝜏𝑠,𝜎,𝜙) to ℱCoreWallet. Similarly

to Issue Transaction interface, note that 𝒮 knows skp𝑐 via TABLE;

• Party Corruption: Whenever the adversary 𝒜 corrupts a party 𝑃 , 𝒮 corrupts it in

the ideal process and hands to 𝒜 the corresponding entries in TABLE.

The “if” part. Assume, for the sake of the argument, that the environment 𝒵 can

distinguish between the ideal and the real execution with non-negligible probability for

any simulator construction, including the earlier 𝒮 construction. In that case, it suffices

to show that, if 𝜋CoreWallet does not securely realize ℱCoreWallet, and given the 𝒮 con-

struction, then either of the following holds when a “bad” event 𝐸 occurs: the signature

scheme is not EUF-CMA, GenAddr is not collision resistant or attribute non-malleable,

the function RTagGen is not collision resistant, or the hierarchical property of HKeyGen
does not hold.

Unforgeability: We assume that collision resistance and non-malleability properties of

the algorithm GenAddr hold, likewise the collision resistance and hierarchical properties
for RTagGen and HKeyGen respectively, along with the signature scheme properties

completeness and non-repudiation, but unforgeability does not hold (otherwise the theo-

rem completes). Note that, by hypothesis, 𝒵 distinguishes between the two worlds for

any construction of 𝒮, including the earlier 𝒮 construction.

Now we construct a forger 𝐺 for the unforgeability game per the EUF-CMA defini-

tion, which initially receives (vkp,skp) as a challenge (we focus on the payment keys and

interfaces, but we note that the case for staking is analogous). 𝐺 simulates the earlier

described 𝒮 in the interaction with 𝒵. It then issues signature queries to its game, when

requested by its simulation of 𝒮 and ℱCoreWallet for signatures on vkp.

Chapter 4. Account Management in Proof-of-Stake Ledgers 65

In addition, when receiving verificationmessages of the form (VerifyPayment,sid, 𝜏 ,𝜎)
for other addresses (possibly from other verification keys), 𝐺 uses its internal simula-

tion, specifically the Transaction Verification interface, i.e., its internally generated keys, to

properly simulate the execution to 𝒵. In particular it checks if (𝜏,𝜎) has been queried in
the security game. If it is not listed as queried and Verify(𝜏,𝜎,vkp) = 1, then it outputs
(𝜏,𝜎) and wins the game. Otherwise, it continues with the simulation.

Given that the environment 𝒵 distinguishes between the two executions by hypoth-

esis and all other properties of the functions hold, we are guaranteed that if 𝜋CoreWallet

does not securely realize ℱCoreWallet, then the unforgeability property does not hold.

Note that the earlier unforgeability reasoning is valid for Σ with key generation re-

lying on KeyGen, however 𝜋CoreWallet relies on HKeyGen. Therefore, consider the fol-

lowing argument.

HKeyGen is hierarchical for Σ and every index 𝑖 is used only once: Assume the two

following protocols: i) a protocol which is similar to 𝜋CoreWallet, except the key genera-

tion function KeyGen of Σ is used instead of HKeyGen, and ii) the protocol 𝜋CoreWallet.

Now, it is evident that the first protocol securely realizes the ideal functionality (since

all other properties needed as per the Theorem hold). Therefore, the execution of the

first protocol is indistinguishable from the execution of the ideal functionality, as proved

in the earlier reasoning.

Next, consider a PPT algorithm 𝐷 who tries to distinguish between the executions

of the two protocols above. Specifically, assume that there exists a “special” index 𝑖,
for which the usage of HKeyGen in the signature scheme is insecure, i.e., a forgery can

be computed by the adversary. For the sake of argument, consider the probability that

the scheme breaks for this index 𝑖 by 𝑝. It is clear that, for this index 𝑖, 𝐷 is successful,

by observing the violation of the properties of the signature scheme with HKeyGen.
Note also that the number of produced keys, i.e., the number of used indexes in both

executions, is bounded by a polynomial 𝑃(𝜅). Therefore, the overall probability that 𝐷
is successful is equal to 𝑝

𝑃(𝜅) .

However, by definition, HKeyGen is hierarchical for Σ. Thus, the executions of the

two protocols are indistinguishable and, as a result, the probability that 𝐷 is successful,

i.e., 𝑝
𝑃(𝜅) , is negligible. Consequently, the probability 𝑝, i.e., that the signature scheme

which uses HKeyGen breaks, is also negligible. Therefore, the execution of 𝜋CoreWallet is

indistinguishable from the execution of the ideal functionality as well, thereby 𝜋CoreWallet

securely realizes the ideal functionality.

The “only if” part. Here we show that, if a single property does not hold, then the

Chapter 4. Account Management in Proof-of-Stake Ledgers 66

environment 𝒵 can distinguish between the real and ideal executions with non-negligible

probability. In other words, there is no simulator construction that prevents 𝒵 from

distinguishing both executions.

Success probability of 𝒵 under weakened assumptions. We now assume that some

property of the functions used by the protocol is broken. We will then show that

𝜋CoreWallet does not securely realize ℱCoreWallet. Specifically, we can create an environ-

ment 𝒵 and an adversary 𝒜 such that, for any simulator 𝒮, 𝒵 distinguishes between the

real execution of 𝒜 with 𝜋CoreWallet and the ideal execution of 𝒮 with ℱCoreWallet.

Initially, the environment sends (Initialise,sid) for some party 𝒫. For each property

required by the theorem, we show that the environment can distinguish between the

two executions as follows:

• Completeness: We assume that Σ is not complete. 𝒵 initializes the wallet for a

second party 𝒫′ and sends two messages (GenerateAddress,sid,aux), for some

arbitrary auxiliary information aux, and obtains two addresses 𝛼𝑠 and 𝛼𝑟 for

the parties 𝒫 and 𝒫′ respectively. Next, it creates a transaction object 𝜏 =
(Θ,𝛼𝑠,𝛼𝑟,𝑚), for arbitrary values of assets Θ and metadata 𝑚, and obtains a

signature 𝜎 for the transaction 𝜏 by sending the message (Pay,sid, 𝜏). Finally, it
calls the verification interface by sending themessage (VerifyPayment,sid, 𝜏 ,𝜎). In
the ideal execution the output is always (VerifiedPayment,sid, 𝜏 ,𝜎,1), whereas in
the real execution the probability that the output is (VerifiedPayment,sid, 𝜏 ,𝜎,0)
is non-negligible. The environment could also succeed in distinguishing the exe-

cutions by accessing the Staking and Staking Verification interfaces, issuing staking

acts and checking the verification bit similarly as with payment transactions.

• Non-repudiation: We assume that Σ does not offer non-repudiation. The envi-

ronment now acts like in the case of completeness, obtaining a signed transaction

(𝜏,𝜎). However, it now calls the verification interface twice. In the ideal execu-

tion, the verification bit of the response will both times be equal to 1, whereas
in the real execution the probability that the verification bit is 0 is non-negligible.

Again the environment could access the staking issuing and verification interfaces

similarly.

• Unforgeability: We assume that Σ is forgeable, so there exists a forger 𝐺 for Σ.

The environment now runs an internal copy of 𝐺. When 𝐺 wishes to obtain a

signature from its oracle for some transaction 𝜏 , 𝒵 accesses the Issue Transac-

tion interface by sending the message (Pay,sid, 𝜏) and obtains a signature, which

Chapter 4. Account Management in Proof-of-Stake Ledgers 67

it forwards to 𝐺. When 𝐺 outputs a signed transaction (𝜏,𝜎), 𝒵 proceeds as

follows. If 𝜏 has been previously signed, i.e., if 𝜎 has been creating by accessing

the Issue Transaction before, then it halts. Otherwise, it accesses the verification

interface by sending the message (VerifyPayment,sid, 𝜏 ,𝜎). Now, in the ideal ex-

ecution the verification bit in the response from the verification interface is always

0, whereas in the real world it is 1 with non-negligible probability.

• Collision resistance: We assume that GenAddr is not collision resistant. The envi-

ronment obtains two addresses by calling the address generation interface twice,

i.e., sending two messages (GenerateAddress,sid,aux) for the same auxiliary in-

formation aux. In the ideal execution the attribute lists in the address responses

will always be different, whereas in the real execution the probability that two

equal addresses for different attribute lists are returned is non-negligible.

• Attribute non-malleable: We assume that GenAddr is not attribute non-malleable.

Then the environment 𝒵, which may retrieve correctly generated addresses by

accessing the Address Generation interface, can generate a forged address 𝛼∗. As-

sume, without loss of generality, that 𝛼∗ has been the receiving address for some

past transaction, therefore 𝛼∗ owns some assets. Assume also that 𝒵 issues a

transaction from 𝛼∗ to a legitimate address 𝛼𝑟, i.e., created via the address gener-

ation interface ofℱCoreWallet. On submitting (VerifyPayment,sid,Θ,𝛼∗,𝛼𝑟,𝑚,𝜎),
for some assets Θ and metadata 𝑚, the environment 𝒵 will receive a message

(VerifiedPayment,sid,Θ,𝛼∗,𝛼𝑟,𝑚,𝜎,0), since the check of the predicate 𝑀SM

within ℱ𝑀SM
CoreWallet outputs 0. On the other hand, in the real world interaction

with 𝜋CoreWallet, 𝒵 receives (VerifiedPayment,sid,Θ,𝛼∗,𝛼𝑟,𝑚,𝜎,1). Therefore,
𝒵 is able to distinguish between the executions.

• RTagGen collision resistance and every index 𝑖 is used only once: Let us now assume

that either RTagGen is not collision resistant or that an index 𝑖 is used more than

once. Then𝒵 can generate several address requests (GenerateAdddress,sid,aux)
and observe the generated tags wrt within each address 𝛼. If RTagGen is not

collision resistant, then 𝒵 will observe a bias in the distribution of the output of

RTagGen in the real world, i.e., it will observe the same recovery tag for two

different addresses.

• HKeyGen hierarchical property and every index 𝑖 is used only once: Assume now

that HKeyGen is not hierarchical for Σ. Then, following the reasoning above,

Chapter 4. Account Management in Proof-of-Stake Ledgers 68

the execution of the protocol which uses KeyGen is indistinguishable from the

ideal execution. However, by assumption the execution of 𝜋CoreWallet is not in-

distinguishable from the execution of that protocol anymore. Therefore, it is not

indistinguishable from the execution of the ideal functionality as well.

Note that, in all cases, there is no mention of the simulator 𝒮, therefore the reason-
ing applies for any construction of 𝒮.

In conclusion, we have shown that if either of the properties is broken, then the

environment can distinguish between the two executions, thus a protocol that uses a

scheme that does not provide one of the properties does not securely realize the ideal

functionality ℱCoreWallet.

4.5.3 Security in the Fully Malleable Setting

We also realize the functionality parameterized with the fully malleable predicate 𝑀FM;

the predicate description is given in Algorithm 2.

Theorem3. Let the generic protocol 𝜋CoreWallet be parameterized by a signature schemeΣ
and the RTagGen, HKeyGen, and GenAddr functions. Then 𝜋CoreWallet securely realizes the

ideal functionality ℱ𝑀FM
CoreWallet if and only if Σ is EUF-CMA, RTagGen is a collision resistant

(cf. Definition 1), HKeyGen is hierarchical for Σ as (cf. Definition 11), and GenAddr is

collision resistant (cf. Definition 9).

Proof. The proof follows similarly to the proof of Theorem 2, while not considering the

non-malleability property of the address generation scheme.

4.5.4 Attacking the Malleable Protocol in the Non-Malleable

Setting

In this section, before presenting the attack, we describe an additional property of

GenAddr. Next we show that with the extra property, in a more restricted setting

which is captured by the non-malleable predicate 𝑀NM of Algorithm 5, the protocol

cannot be proven secure.

Metadata extraction for a posteriori malleability. Given 𝛼, it is infeasible for

the adversary to generate valid addresses, i.e., for the same verification payment key,

without access to at least the metadata (for completeness, or the attribute list of the

original address). More concretely:

Chapter 4. Account Management in Proof-of-Stake Ledgers 69

Pr
⎡
⎢⎢
⎣

𝑙 = (𝛿1,…,𝛿𝑔),
𝛼 ← GenAddr(𝑙),

(𝛼′, 𝛿′
𝑖,…,𝛿′

𝑔) ← 𝒜GenAddr𝑑(⋅)(𝛿𝑖,…,𝛿𝑔)
∶

(GenAddr𝑑(𝛿′
𝑖,…,𝛿′

𝑔) = 𝛼′)∧
(𝛼′ ≠ 𝛼)∧

(𝛼′ ∉ Addrs)

⎤
⎥⎥
⎦

≤ negl(𝜅)

where the probabilities are computed on the randomness used in GenAddr algorithm,

every PPT adversary 𝒜 and the values of 𝑙. Furthermore, Addrs is the list of all the

addresses received from the GenAddr(⋅) oracle.

Remark. The a posteriori malleability property implicitly requires that GenMeta is meta-

data extraction resistant, otherwise the metadata are easily accessible by the adversary.

We now describe the attack on the protocol 𝜋CoreWallet instantiated with an a pos-

teriori malleable GenAddr algorithm.

Theorem 4. Let the protocol 𝜋CoreWallet be instantiated with a collision resistant and a

posteriori malleable GenAddr, a metadata extraction resistant GenMeta function as defined

in the a posteriori malleability setting of Section 4.5.1, an EUF-CMA signature scheme Σ, a

collision resistant RTagGen, and a hierarchical HKeyGen for Σ as per Definition 11. Then,

𝜋CoreWallet does not securely realize the ideal functionality ℱ𝑀NM
CoreWallet.

Proof. We construct an environment 𝒵 which distinguishes efficiently between the ideal

execution of ℱ𝑀NM
CoreWallet and 𝒮, and the real one given by 𝜋CoreWallet and 𝒜. The attack

exploits the malleable feature of the address construction regarding the exposure of the

metadata while spending the funds.

The environment issues an address via party 𝒫1, say 𝛼1, now assume without loss

of generality that 𝛼1 receives some funds during the execution. Now 𝒵 issues an

address generation request for party 𝒫2, therefore it would receive 𝛼2. The next

step is to generate a transaction from 𝛼1 to 𝛼2, which 𝒵 can do by issuing message

(Pay,sid,Θ,𝛼1,𝛼2) from 𝒫1. 𝒵 receives (Transaction,sid, 𝜏 ,Sign(skp, 𝜏)) such that

𝜏 = (Θ,𝛼1,𝛼2,𝑚) for metadata 𝑚.

At this point, the property metadata extraction resistance of the GenMeta nor

GenAddr help any longer, since 𝑚 is exposed to 𝒵. It is fair to assume that 𝒵 uses

𝑚 to generate locally, i.e., without using the Address Generation interface, the address

𝛼𝑙𝑜𝑐𝑎𝑙.

Next, for the sake of argument, assume the existence of a simulator 𝒮 which per-

fectly simulates the ideal execution, therefore we can also assume that eventually 𝛼𝑙𝑜𝑐𝑎𝑙

Chapter 4. Account Management in Proof-of-Stake Ledgers 70

has assets Θ′. At this point, 𝒵 submits the message (Pay,sid,Θ′,𝛼𝑙𝑜𝑐𝑎𝑙,𝛼) for any

party 𝒫 and some (correctly generated) address 𝛼, then the environment 𝒵 receives

(Transaction,sid, 𝜏 ,𝜎) such that 𝜏 = (Θ′,𝛼𝑙𝑜𝑐𝑎𝑙,𝛼,𝑚′) for metadata 𝑚′.

Finally, in order to distinguish the executions, 𝒵 submits (VerifyPayment,sid, 𝜏 ,𝜎)
to any party, for which it receives (VerifiedPayment,sid, 𝜏 ,𝜎,𝑏). Note that 𝑏 = 1 if it is a

real execution by 𝜋CoreWallet and 𝒜, because 𝑏 = Verify(𝜏,𝜎,vkp). On the other hand,

due to the fully non-malleable predicate 𝑀NM, which would output 0, 𝑏 = 0.
𝒵 efficiently distinguishes between the executions, thereby 𝜋CoreWallet, in the a poste-

riori malleability setting, does not securely realizes the ideal functionalityℱ𝑀NM
CoreWallet.

4.6 PoS Addresses: Construction and Recovery

The final step in fully realizing the core wallet is to implement the functions used by the

protocol 𝜋CoreWallet, more importantly the address generation function. In the following

paragraphs, we outline the three types of addresses in our framework, i.e., base, pointer,

and exile. We concretely describe an address’s attributes and how an index is used to

generate a “child” address. Then, we present multiple address schemes, each offering

different levels of protection against malleability attacks, resulting in different address

lengths, but all easily implementable with standard cryptographic primitives.

4.6.1 Address Types and their Attributes

As discussed above, at least two attributes are required per address, i.e., the staking

(vks,sks) and the payment (vkp,skp) key pairs. As shown in Section 4.3, the signing

keys sks and skp are private, while the verification keys vkp and vks are semi-public and

public attributes respectively. We remind that (vkp,skp) is used in proving ownership

of the assets and issuing payments, whereas (vks,sks) is used to perform staking actions

on behalf of the assets.

The first step in computing a “child” address and its attributes is the choice of an

index 𝑖 from the set 𝕀. As with hardware wallets (Chapter 3), an index is an identifier

that is used to generate a “child” key. We define a list of domains [𝕀1, 𝕀2,…,], where
each 𝕀𝑖 has a finite, relatively small, cardinality. During address generation, the wallet

initially picks indexes from 𝕀1. After all indexes in 𝕀1 have been used, it uses 𝕀2 and so

on. It is required that at least one address for an index in 𝕀𝑗 is published on the ledger,

i.e., is on the sending or receiving end of a transaction, before indexes from 𝕀𝑗+1 are

Chapter 4. Account Management in Proof-of-Stake Ledgers 71

used. During recovery, the wallet sets 𝑗 = 1 and generates all indexes in 𝕀𝑗. It then

constructs the recovery tag for each index and compares it with each address in the

blockchain. If at least one index has been used in a published address, then the wallet

sets 𝑗 = 𝑗 + 1 and repeats for 𝕀𝑗+1. When, for some 𝑗 no index corresponds to any

published address, recovery is complete.

We now discuss the complexity of the recovery procedure. Given that the cardinal-

ity of 𝕀 is small, the probability that the same index is chosen twice, even for a random

choice, is not negligible. Therefore, two devices that maintain the same wallet core

would need to share the state of the indexes that have been used by each. The number

of indexes and addresses that the wallet can generate is not restricted, since the set of

domains is infinite. In terms of complexity, this naive scheme is linear to the number

of addresses in the ledger. We can improve this with an index of published addresses,

based on their recovery tag. Using such index, the recovery complexity becomes lin-

ear to the cardinality of ⋃
𝑗

𝕀𝑗, i.e., the number of addresses that the wallet owns and

has published. Since the recovery tags are public, such index can be constructed and

circulated on the network by everybody.

A hierarchical key, which is derived from the wallet’s master key msk and is linked

to a child address, is created by HKeyGen. This function takes the master key, a label

lbl ∈ {payment,staking} and an index 𝑖 and passes them to a pseudorandom function,

which outputs a pseudorandom value passes it to a pseudorandom number generator

that outputs 𝑝(𝜅) bits 𝜌, for some suitable polynomial 𝑝. These bits are then passed

as random coins to the key generation function KeyGen(1𝜅;𝜌). Therefore, to gener-

ate a child payment key, the protocol runs HKeyGen(⟨msk,payment, 𝑖⟩), while similarly

lbl = staking is used to issue a new staking key.

The wallet produces three types of addresses, differentiated by the staking object

𝛽. To produce a base address, the wallet computes a staking key vks and sets 𝛽 as the

hash of it. For a pointer address, the address’s staking key is set indirectly. Specifically,

the staking object 𝛽 is a delegation pointer 𝑝𝑡𝑟. The pointer is a string that identifies

a published certificate, i.e., the representation of a staking action on the ledger, which

is described in detail in Section 4.7. If 𝑝𝑡𝑟 points to a valid delegation certificate 𝜏𝑑𝑒𝑙,

then the address’s staking key is the delegate’s key in 𝜏𝑑𝑒𝑙, whereas, if 𝑝𝑡𝑟 points to a

registration certificate, then the delegate’s key is the key of the stake pool defined in that

certificate. Finally, for an exile address, the staking object is a fixed value 𝜖 = ⊥. Since

𝜖 does not identify a staking key, the owner of an exile address cannot perform staking

actions or delegate the address’s staking rights, so all assets owned by such addresses

Chapter 4. Account Management in Proof-of-Stake Ledgers 72

are effectively removed from the PoS protocol.

Each address also contains the recovery tagwrt, i.e., a public parameter which allows

the identification of addresses. The tag is created by the function RTagGen and links the

address to the attribute list, without revealing the semi-public attributes. Recovery is

a process that relies only on the master key of the wallet, so the wallet should be able

to recover an address by only knowing its payment key. In the simplest setting, during

recovery the wallet computes the keys for its indexes and hashes them to compute the

recovery tags. Therefore, RTagGen is the hash function H and, by definition, is collision

resistant as required.

Searchable recovery. This design builds on the premise of searchable encryption

[BBO07]. Specifically, access to the wallet’s master key enables searching all addresses

in the ledger and recognize the ones that belong to the wallet. Assuming an instance

of a semantically secure symmetric encryption scheme ⟨Enc,Dec⟩, the hierarchical tag

generation function SearchableTagGen computes the output of Enc, using msk as the

encryption key and the index 𝑖 as the plaintext:

sht = Enc(msk, 𝑖) (4.1)

During recovery, the wallet parses all addresses in the blockchain and decrypts the tag

sht′ in each as 𝑖′ = Dec(msk,sht′). If the output is a well-formed index 𝑖′ ∈ ℐ, the
address belongs in the wallet and its hierarchical index is 𝑖′. Since the output of the

encryption function Enc is by definition random in the domain of Enc, the recovery tag
generation is a PRF as needed.

Malleability verification tags. These tags are used to verify whether a part of the

address has been altered during transit. Specifically, the motivation is for the address

owner to identify whether amalleability attack has occurred, even in case the transaction

is accepted by the system. The tag is computed as follows:

mht = H(msk||𝑖||𝛽) (4.2)

where 𝛽 is the staking attribute, for which the wallet needs to identify possible malleabil-

ity attacks. Clearly the tag generation is again a pseudorandom function. Also, without

the master key msk, an attacker cannot forge such tag. However, only the wallet owner
can verify that such tag is properly constructed for a given address, i.e., it is not sufficient

to construct non-malleable address schemes.

Chapter 4. Account Management in Proof-of-Stake Ledgers 73

4.6.2 Malleable Addresses

As discussed in Section 4.5.1, The two basic properties of an address generation function

are collision resistance and non-malleability. On the one hand, collision resistance is a fea-

ture that has been extensively investigated in the literature. On the other hand, address

non-malleability, in the manner presented in this chapter, is a novel notion. Therefore,

let us first present a malleable scheme and the problems that stem from it.

Suppose two users 𝒫𝐴 and 𝒫𝐵. 𝒫𝐵 wishes to receive some assets from 𝒫𝐴, so she

generates an address 𝛼 and gives it to 𝒫𝐴; the payment key of 𝛼 is vkp and the staking

object is 𝛽. If the address generation function is malleable, 𝒫𝐴 can create an address

𝛼′, where the payment key is again vkp but the staking object is 𝛽′. Notice that 𝒫𝐴
only knows the address 𝛼, i.e., neither the payment key vkp nor any other information,

e.g., other addresses that 𝒫𝐵 owns. Now, 𝒫𝐵 can spend from 𝛼′, so 𝒫𝐴 can claim that

the payment is valid and complete, even though 𝒫𝐴 has effectively chosen the key that

controls that stake. Tomakematters worse, the malleability attack may go unnoticed by

𝒫𝐵, unless she keeps a state of her generated addresses and compares with the forged

one.

A malleable address is constructed by concatenating the hash of the verification pay-

ment key vkp and the staking object 𝛽, so 𝛼 = H(vkp)||𝛽. The valueH(vkp) acts as both
the association of the address with the payment key and the wallet recovery tagwrt. The
staking object 𝛽 takes the following forms, depending on the type of address: i) base:

𝛽 = H(vks); ii) pointer: 𝛽 = getPointer(vks); iii) exile: 𝛽 = 𝜖. The malleable address

generation function is defined in Algorithm 6, while Lemma 1 shows that MGenAddr is
collision resistant.

Lemma 1. MGenAddr is collision resistant if H is collision resistant.

Proof. The proof is by contradiction. Suppose an adversary produces two attribute lists

𝑙1 = (aux1, 𝛿1,vkp1), 𝑙2 = (aux2, 𝛿2,vkp2), such that 𝑙1 ≠ 𝑙2, which correspond to the

addresses𝛼1 = MGenAddr(𝑙1) = H(vkp1)||𝛽1 and𝛼2 = MGenAddr(𝑙2) = H(vkp2)||𝛽2.

If the adversary finds a collision of addresses, then 𝛼1 = 𝛼2 and it also holds that

H(vkp1) = H(vkp2) and 𝛽1 = 𝛽2. However, by assumption it holds that 𝑙1 ≠ 𝑙2, so it

also holds that vkp1 ≠ vkp2 and the adversary has found a collision for H.

MGenAddr is malleable since, for every address 𝛼 = H(vkp)||𝛽 that 𝒫𝐵 gives to

𝒫𝐴, 𝒫𝐴 can create a new address as 𝛼′ = H(vkp)||𝛽′ for some staking object 𝛽′ ≠ 𝛽.
Also, 𝒫𝐵 cannot identify a forgery without keeping track of the addresses that she has

Chapter 4. Account Management in Proof-of-Stake Ledgers 74

Algorithm 6 The malleable address generation function, parameterized by H(⋅). The
input is a tuple 𝑙𝛼,𝐺𝑒𝑛, consisting of the auxiliary information aux and the attributes.

function MGenAddr(𝑙𝛼,𝐺𝑒𝑛)

(aux,𝑠𝑡,vkp) = parse(𝑙𝛼,𝐺𝑒𝑛)
switch aux do

case base
𝛽 = H(vks)

case pointer
𝛽 = getPointer(vks)

case exile
𝛽 = 𝜖

𝛼 = H(vkp)||𝛽
return 𝛼

end function

honestly generated. However, this is not always feasible, e.g., wallet recovery, when

the wallet owner knows the payment keys but does not necessarily keep track of the

staking object for each address in the wallet.

Verifiably malleable addresses. This scheme is similar to the above, with the ad-

dition that the wallet can identify a forgery. The address 𝛼 is now constructed by con-

catenating the string generated by MGenAddr, as before, and the malleability verification

tag, which is constructed as in Section 4.6.1:

mht = H(msk||𝑖||𝛽) (4.3)

𝛼 = H(vkp)||𝛽||mht (4.4)

This scheme is also susceptible to the malleability attack described above, since,

given𝛼 = H(vkp)||𝛽||mht, 𝒜 can create a forgery like𝛼′ = H(vkp)||𝛽′||mht. However,
now the owner of the wallet can compare the staking object 𝛽′ with the tag mht and
identify the attack, while also using H(vkp) as the recovery tag.

4.6.3 A Posteriori Malleable Addresses

In this section we describe various schemes of a posteriori malleable address generation.

First, Algorithm 7 defines an a posteriori verifiable malleable address generation function

PNMGenAddr.

Chapter 4. Account Management in Proof-of-Stake Ledgers 75

Algorithm 7 A posteriori malleable address generation function, parameterized by

H(⋅). The input is a tuple 𝑙𝛼,𝐺𝑒𝑛, consisting of the auxiliary information aux and the

attributes.
function PNMGenAddr(𝑙𝛼,𝐺𝑒𝑛)

(aux,vks,vkp,ht) = parse(𝑙𝛼,𝐺𝑒𝑛)
switch aux do

case base
𝛽 = H(vks)

case pointer
𝛽 = getPointer(vks)

case exile
𝛽 = 𝜖

root = H(vkp||ht||𝛽)
𝛼 = root||ht||𝛽
return 𝛼

end function

In this case, 𝒜 cannot act as above. Specifically, if 𝒜 changes 𝛽 to some 𝛽′, without

changing root, then, upon spending from the address, root will be invalid. Since 𝒜 does

not know vkp, it cannot construct a valid root for both vkp and 𝛽′, unless explicitly

asking 𝒫𝐵 for such address. Alternatively, if she only changes root and keeps 𝛽, it can
be easily found that root ≠ H(vkp||ht||𝛽), so the payment is rejected and the assets

are effectively burnt in the malformed address. We note that tag ht is necessary, since
root includes the staking object, so a wallet that knows only the payment key could not

recreate it during recovery.

However, this scheme allows for a posteriori malleability, as defined in Section 4.2.

Specifically, 𝒜 can perform the attack if she knows a past key of the wallet, for which

she wishes to generate the forged address. In this case, both the wallet recognizes the

forged address as its own and the owner is able to spend from it.

Finally, as with the malleable addresses, this scheme can be transformed into a ver-

ifiable one via a verification tag. The tag would be ht = (ht1,mht), where ht1 is the

recovery tag, for either a predefined index iht or a searchable one sht, and mht is the
malleability verification tag.

Chapter 4. Account Management in Proof-of-Stake Ledgers 76

4.6.4 Sink Malleable Addresses

Our final address scheme is a sink malleable construction. The core idea is to certify the

staking object with the payment key; thus, to produce a forgery, the adversary needs to

forge a payment key’s signature. A sink malleable address is as follows:

𝛼 = H(vkp)||𝛽||Sign(skp,𝛽) (4.5)

The value H(vkp) associates the address with the payment key, while also serving as the

recovery tagwrt. The staking object 𝛽 for the three address types is: i) base: 𝛽 = H(vks);
ii) pointer: 𝛽 = getPointer(vks); iii) exile: 𝛽 = 𝜖.

In practice, upon issuing a transaction and revealing the payment key vkp, every-
body can check the signature to identify forgeries. Algorithm 8 formally defines the sink

malleable construction, while Lemmas 2 and 3 prove that our scheme is both collision

resistant and non-malleable.

Algorithm 8 The sink malleable address generation function, parameterized by a hash

H(⋅) and a signature scheme Σ. The input is a tuple 𝑙𝛼,𝐺𝑒𝑛, consisting of the auxiliary

information aux and the attributes.
function SinkGenAddr(𝑙𝛼,𝐺𝑒𝑛)

(aux,𝑠𝑡,vkp,skp) = parse(𝑙𝛼,𝐺𝑒𝑛)
switch aux do

case base
𝛽 = H(𝑠𝑡)

case pointer
𝛽 = getPointer(𝑠𝑡)

case exile
𝛽 = 𝑠𝑡

𝛼 = H(vkp)||𝛽||Sign(skp,𝛽)
return 𝛼

end function

Lemma 2. SinkGenAddr is collision resistant if H is collision resistant.

Proof. Let 𝑙1 = (aux1,𝑠𝑡1,vkp1,skp1), 𝑙2 = (aux2,𝑠𝑡2,vkp2,skp2) be two attribute lists,

𝑙1 ≠ 𝑙2, corresponding to addresses𝛼1 = MGenAddr(𝑙1) = H(vkp1)||𝛽1||Sign(skp1,𝛽1)
and 𝛼2 = MGenAddr(𝑙2) = H(vkp2)||𝛽2||Sign(skp2,𝛽2).

Chapter 4. Account Management in Proof-of-Stake Ledgers 77

If 𝛼1 = 𝛼2 then it also holds that H(vkp1) = H(vkp2), 𝛽1 = 𝛽2, and Sign(skp1,𝛽1) =
Sign(skp2,𝛽2). However, by assumption we have 𝑙1 ≠ 𝑙2, so it also holds that vkp1 ≠
vkp2 and thus the adversary has found a collision for H on the two values of the payment

verification keys and signatures on the staking object.

Lemma 3. SinkGenAddr, when parameterized with a signature scheme Σ, is attribute

non-malleable if Σ is EUF-CMA.

Proof. Assume the key pair (vkp,skp) and the address 𝛼 = H(vkp)||𝛽||Sign(skp,𝛽),
for staking object 𝛽. Also assume the existence of an adversary 𝒜 who breaks the

attribute non-malleability property of SinkGenAddr. We will construct a forger 𝐹 for

the signature scheme, which simulates the security game for 𝒜. The forger works as

follows. 𝐹 receives a key vkp and has access to the signing oracle. It sets the attribute

list 𝑙 = (vkp,aux,𝛽,wrt) and initializes 𝒜 with public attributes (aux,𝛽,wrt). Note that

𝐹 answers generation address queries by using its own signature oracle. That is, upon

receiving (aux𝑖,𝛽𝑖,wrt𝑖), it issues a signature query on 𝛽𝑖 and generates a new address

𝛼𝑖. Moreover, 𝐹 may receive a metadata query on issued addresses 𝛼𝑖 and answer by

revealing vkp. By hypothesis 𝒜 outputs a list (𝛼∗,aux∗,𝛽∗,wrt∗), as per the attribute

non-malleability game, for which it holds that SinkGenAddr(skp,vkp,aux∗,𝛽∗,wrt∗) →
𝛼∗, where 𝛼∗ was not queried during the game and 𝛼∗ ≠ 𝛼, where 𝛼 is the original

address provided during the challenge: SinkGenAddr(skp,vkp,aux,𝛽,wrt) → 𝛼. Since
𝒜 is successful, the signature holds for both 𝛼 and 𝛼∗, so 𝐹 uses 𝛼∗ = (H(vkp||𝜎∗),𝛽∗)
to output (𝛼∗,𝜎∗) as its pair of forged message and signature.

Remark. In an attempt to shorten the address, one may entertain the idea of including the

signature in the hashed data. However, in such case, the hash could not act as the recovery tag

anymore, since both the staking object 𝛽 and the signature cannot be predicted, given only the

address’s payment key. Therefore, either the wallet’s recovery becomes necessarily linear to

the number of addresses in the ledger, which is a significant performance overhead compared

to the recovery mechanism of Section 4.6.1, or an additional component is introduced, i.e., a

dedicated recovery tag, which effectively counters the address shortening effort. Alternatively,

the address could contain the signature’s hash, rather than the signature itself, as the signature

is only checked after a payment is issued, i.e., when vkp is revealed. However, although such

design could reduce the address’s length, it would also increase the ledger’s overall size, since

both the signature and its hash would be published.

Chapter 4. Account Management in Proof-of-Stake Ledgers 78

4.7 The Proof-of-Stake Wallet

So far, we have covered the core wallet protocol and functionality and the respective

security analysis. Now, we focus on the wallet’s interaction with a PoS ledger. Specif-

ically, we consider a PoS wallet with access to a core (as defined by ℱCoreWallet) and a

PoS ledger, which enables a user to issue payments, participate in the PoS protocol, or

delegate stake in the ledger. Specifically, in this section, we describe how to construct

such PoS wallet and describe the issuing of payments, delegation, stake pool registra-

tion, as well as the generic PoS protocol participation’s rules. Finally, we formalize the

security of the “stake-pooled” variant of any PoS protocol and describe various modes

of execution of the PoS wallet, which offer enhanced safety and privacy.

Our system depends on the following functions and properties, parameterized by a

chain 𝒞:

1. 𝐹𝜃(⋅): given an address 𝛼, the function returns the assets that 𝛼 owns;

2. 𝐹Φ,𝑡𝑥(⋅): given a transaction 𝜏 , the function outputs the fees Φ of publishing 𝜏 on

the ledger;

3. 𝐹𝑜𝑡𝑥(⋅): given an address 𝛼, the function outputs the number of 𝛼’s outgoing
transactions;

4. Φ𝑟𝑒𝑔: the (protocol-specific) cost of stake pool registration;

5. 𝛼𝑟𝑒𝑔: a special address that pertains to pool registration;

6. 𝐹𝑃𝑜𝑆,𝑝𝑙𝑎𝑦𝑒𝑟(): given a chain, a function that outputs the next participant in the

PoS protocol.

4.7.1 Payment

Payment is the transfer of Θ assets from a sender’s address 𝛼𝑠 to the receiver’s address

𝛼𝑟. To make a payment, the wallet first creates an object 𝜏 = (Θ,𝛼𝑠,𝛼𝑟,𝑚), with
some metadata 𝑚. For a UTxO blockchain, the metadata contains a change address

𝛼𝑐. For an account-based ledger, the wallet retrieves the number of output transac-

tions 𝑜𝑡𝑥 = 𝐹𝑜𝑡𝑥(𝛼𝑠) and adds it to the metadata, as replay attack protection (see be-

low Section 4.7.5). All addresses are generated via the Address Generation interface of

ℱCoreWallet. Also the wallet calls 𝐹𝜃(𝛼𝑠) to retrieve the balance Θ′ of 𝛼𝑠 and calculates

the fees Φ = 𝐹𝜙,𝑡𝑥(𝑡𝑥).

Chapter 4. Account Management in Proof-of-Stake Ledgers 79

After ensuring that the address has enough balance, i.e., that (Θ ∪ Φ) ⊆ Θ′, the

wallet sends (Pay, 𝜏) to ℱCoreWallet. When (Transaction, 𝜏 ,𝜎) is returned, the wallet

publishes it on the network. The signed transaction can be easily verified by sending

(VerifyPay, 𝜏 ,𝜎) to ℱCoreWallet and waiting for the response VerifiedPay(𝜏,𝜎,1).

4.7.2 Stake Pool Registration

A stake pool is identified by a registered staking key. Prior to registration, the pool’s

wallet first uses the address generation interface of ℱCoreWallet to compute a staking key

(vks,sks). It then creates a registration certificate 𝑟 = (vks,𝑚), where 𝑚 is the pool’s

metadata, e.g., the name of the pool’s leader. To register, the wallet sends (Stake, 𝑟)
to ℱCoreWallet. Upon receiving (Staked, 𝑟,𝜎), it publishes Σ = (𝑟,𝜎) on the ledger by

creating a special payment transaction. Specifically, the wallet retrieves the registration

fees Φ𝑟𝑒𝑔 and the special address 𝛼𝑟𝑒𝑔. It then uses an address 𝛼𝑠, which it owns, to

create 𝜏 = (Φ𝑟𝑒𝑔,𝛼𝑠,𝛼𝑟𝑒𝑔,Σ), i.e., a transaction including the registration certificate in

its metadata. This transaction is signed and published as above. To validate a registra-

tion certificate Σ = (𝑟,𝜎), a party sends (VerifyStake, 𝑟,𝜎) to ℱCoreWallet and waits for

(VerifiedStake, 𝑟,𝜎,1).

4.7.3 Delegation

Stake delegation is achieved with certificates via a process similar to the staking pool

registration. A delegation certificate is a tuple 𝑑 = (vks𝑠, ⟨vks𝑑,𝑚⟩). The first element

is the staking key vks𝑠, onwhich the certificate applies. The second is the staking key vks𝑑
of the delegate. The third element is the certificate’s metadata. To sign the delegation

certificate, the wallet sends (Stake,𝑑) to ℱCoreWallet. Upon receiving (Staked,𝑑,𝜎) it

publishes Σ = (𝑑,𝜎) on the ledger, following the same method as pool registration,

i.e., via a payment transaction. As before, a party validates Σ via the staking verification

interface of ℱCoreWallet.

An address with staking object 𝛽 is associated with a staking key vks𝑠 in two ways:

i) base address: 𝛽 = H(vks𝑠); ii) pointer address: 𝛽 needs to point to either a delegation

certificate (vks𝑠, ⋅, ⋅, ⋅) or a registration certificate (vks𝑠, ⋅, ⋅), i.e., the pointer address is

associated with the staking key defined in the certificate to which it points.

We stress that, when a staking key issues a delegation certificate, all associated ad-

dresses are re-delegated accordingly. Specifically, the certificate to which a pointer ad-

dress points is used only to identify the staking key with which it is associated, and does

Chapter 4. Account Management in Proof-of-Stake Ledgers 80

Figure 4.6: A representation of the delegation mechanism. Base pointers are linked to

a key via a hash, whereas pointers may point to either a staking key or a pool directly.

not necessarily define its delegation profile. For example, let 𝛼𝑝 be a pointer address

that points to delegation certificate (vks𝑠,vks𝑑,𝑚,𝜎), thus is initially associated with

vks𝑠. Now, vks𝑠 publishes a newer certificate (vks𝑠,vks′
𝑑,𝑚′,𝜎′). All addresses associ-

ated with vks𝑠, including 𝛼𝑝, are now delegated to vks′
𝑑. Figure 4.6 illustrates delegation

for various types of addresses.

Delegation certificates come in two forms, depending on how they are published.

Heavyweight certificates are published on the ledger and are identified by an index, which

represents the position of the certificate in the ledger. The index is the tuple 𝑝𝑡𝑟 =
(𝑏,𝑥,𝑐), where 𝑏 relates to a block in the ledger, 𝑥 represents a transaction in 𝑏, and 𝑐
identifies a certificate in the metadata of 𝑥. Therefore, every pointer address contains
the index of the certificate to which it points. If an address 𝛼 points to an invalid certifi-

cate, then𝛼’s stake is not delegated. Lightweight certificates are not published by default,
but instead become public when their staking key participates in the PoS protocol. Con-

flicts are resolved based on seniority. For instance, let (vks,sks) be a staking key which
issues two certificates Σ1,Σ2. If they are published on the ledger in that order, Σ2
takes effect for all addresses associated with (vks,sks). The metadata of a lightweight

certificate also contain a “counter”, i.e., an integer that breaks ties between lightweight

certificates; if two conflicting lightweight certificates are presented, then whichever has

the higher counter is accepted.

Chapter 4. Account Management in Proof-of-Stake Ledgers 81

Certificate length. Let the curve of the ECDSA scheme be secp256r1 [GBWM+04]

and the hash function be SHA256. The staking pool registration certificate is the tuple

Σ = (vks,𝑚,𝜎). The public key size for vks (in the compressed form) is 33 bytes and

the signature 𝜎 is 132 bytes. The metadata value 𝑚 depends on the implementation;

for simplicity, we can assume that it consists of only a hash, so its length is 32 bytes.

Therefore, the staking pool certificate is 197 bytes. The delegation certificate is the tuple

Σ = (vks𝑠,vks𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒,𝑚,𝜎). As before, the public keys vks𝑠,vks𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒 are 33 bytes

each, whereas the signature 𝜎 is 132 bytes. The metadata 𝑚 contains the counter for

the lightweight certificates; setting it to 1 byte enables up to 256 conflicting lightweight

certificates. Therefore, heavyweight and lightweight delegation certificates are 198 and

199 bytes respectively.

4.7.4 Protocol Participation

Participation in the PoS protocol consists of publishing specially-crafted, protocol-related,

signed messages. The address which is responsible for participation at any given time is

decided by the function 𝐹𝑃𝑜𝑆,𝑝𝑙𝑎𝑦𝑒𝑟 and its staking key is used to sign these messages.

Here, we consider the typical example of PoS participation, block generation, i.e., the

act of extending an existing chain with a newly-created block. For simplicity, a block

is a tuple (vks,𝑚), where (vks,sks) is the staking key which issues the block and 𝑚 is

the block’s contents, i.e., the headers, the tree of transactions, etc. As with delegation

and stake pool registration, the wallet obtains a signature for a new block via the staking

interface of ℱCoreWallet, while a verifier can similarly check it. However, whether a block

is valid for a given ledger, i.e., whether a block can extend a chain, depends on the pro-

tocol’s chain validity rules. Notably, delegation affects these rules. Next, we describe

the validity rules in the presence of delegation, as well as the rules that pertain to chain

delegation, i.e., the re-delegation of delegated stake.

Block Validity. For a chain 𝒞, the chosen address 𝛼𝑃𝑜𝑆 is associated with a staking

key vks𝑃𝑜𝑆 and a candidate block ℬ is signed by a different staking key (vks,sks). The
rules for deciding if ℬ is valid for 𝒞 are as follows:

• if a delegation certificate for vks is published in 𝒞, ℬ is invalid;

• else if a certificate that delegates from vks𝑃𝑜𝑆 to vks is published in 𝒞, ℬ is valid;

• else if either no delegation for vks𝑃𝑜𝑆 or a certificate that delegates from vks𝑃𝑜𝑆

Chapter 4. Account Management in Proof-of-Stake Ledgers 82

to vksℎ is published in 𝒞 and ℬ contains a lightweight certificate delegating from

vksℎ to vks, ℬ is valid;

• else ℬ is invalid.

Chain Validity. The empty chain 𝒞 = 𝜖 is valid. Given a candidate chain 𝒞 = 𝒞′||ℬ,

if 𝒞′ is valid and the block ℬ is valid for ℬ, then 𝒞 is valid.

Chain Decision. Assume 𝒞 is the chain stored locally by the wallet and ℂ is the set

of valid chains available on the network. The longest valid chain from ℂ∪{𝒞} is chosen.

In case of tie between two valid chains 𝒞1 and 𝒞2, where head(𝒞1) and head(𝒞2) are
signed by (vks1,sks1) and (vks2,sks2) respectively, the following rules apply:

• if vks1 and vks2 are delegated via the heavyweight certificates Σ1 and Σ2, with

indexes 𝑖𝑑𝑥1 and 𝑖𝑑𝑥2 respectively, 𝒞1 is chosen if 𝑖𝑑𝑥1 > 𝑖𝑑𝑥2, otherwise 𝒞2 is

chosen;

• else if vks1 is delegated via the heavyweight certificate Σ1 and vks2 is delegated

via the lightweight certificate Σ2, 𝒞1 is chosen;

• else if vks1 and vks2 are delegated via a combination of heavyweight and lightweight

certificates (Σ1,1,Σ1,2) and (Σ2,1,Σ2,2) respectively, then:

– if Σ1,1 and Σ2,1 have different indexes, then choose the one with the higher

index;

– else if Σ1,2 and Σ2,2 have different counters, then choose the one with the

higher counter;

– else choose the first observed on the network.

Delegation Chains. Chain delegation is the ability of a staking key to re-delegate

stake that has been delegated to it. As described in Section 4.7.3, the metadata section

of a delegation certificate defines the rules that pertain to the certificate. One such rule

relates to chain delegation. The metadata entry for this property is a boolean value, “al-

lowChain”, which identifies whether chain delegation is allowed for the applicable stake

of the certificate. For example, let two certificates Σ0 and Σ1, where Σ0 delegates from

a key vks0 to vks2 and sets “allowChain” = 𝑡𝑟𝑢𝑒, whereas Σ1 delegates from vks1 to

(the same key as before) vks2 and sets “allowChain” = 𝑓𝑎𝑙𝑠𝑒. Suppose now that a third

Chapter 4. Account Management in Proof-of-Stake Ledgers 83

certificate Σ3 is published, delegating from vks2 to vks3. Although vks3 is eligible to par-

ticipate on behalf all addresses associated with vks0, it cannot participate for those asso-

ciatedwith vks1, since the corresponding key is vks2 (as chain delegation is not permitted

for this key). More concretely, a delegation chain is a list of certificates [Σ1,…,Σ𝑖] such
that, for each certificate Σ𝑗,1 < 𝑗 ≤ 𝑖, it holds that Σ𝑗−1[vks𝑑] = Σ𝑗[vks𝑠] We say that

vks is delegated via a hain [Σ1,…,Σ] if Σ[vks𝑑] = vks.

4.7.5 Security in the Presence of Stake Pools

In this section, first we analyze the security of stake pools w.r.t. the underlying PoS

protocol’s security assumptions (cf. Corollary 1). Next, we discuss prominent hazards,

namely sybil and replay attacks.

Stake-pooled Security. The security analysis of a PoS stake-pooled variant, i.e., a

PoS protocol with stake pools, is based on the protocol’s honest stake threshold as-

sumption 𝜏 . This parameter identifies the minimum percentage of honest stake needed

for the protocol to be secure. It is typically set to 1
2 + 𝜖 or 2

3 + 𝜖, for some 𝜖 > 0. For
simplicity, we assume that all stake is delegated to a total number of 𝑃 pools. Each

pool possibly controls a different amount of stake. Let 𝑃ℎ be the honest pools among

𝑃 , which control an aggregate 𝜌ℎ percentage of the total stake. When a player dele-

gates their stake, they effectively relinquish their staking rights. Therefore, as Corollary 1

shows, the focus should be put on the adversarial power over pools, rather than stake

itself. For example, if the adversary delegates some stake to an honest pool, then this

stake becomes honest in the stake-pooled setting, as it is controlled by an honest leader.

Intuitively, the adversary compromises the stake-pooled variant’s security by corrupting

an appropriate amount of pools, such that honestly-controlled stake percentage is less

than 𝜏 . We stress that this does not imply that the adversary is required to corrupt a

large number of pools. For instance, if a single pool controls 𝜌𝑎 ≥ 1 − 𝜏 of the total

stake, then the adversary can compromise security by only corrupting this single, albeit

large, pool.

Corollary 1. The stake-pooled variant of a PoS protocol 𝜋 is secure if 𝜌ℎ ≥ 𝜏 , where 𝜌ℎ is

the percentage of the total stake controlled by pools which are managed by honest leaders

and 𝜏 is the honest stake threshold assumption of 𝜋.

Chapter 4. Account Management in Proof-of-Stake Ledgers 84

Sybil Attacks. Using stake pools for the PoS protocol’s execution, rather than the

stakeholders themselves, introduces the possibility of sybil attacks [Dou02]. Specifi-

cally, suppose that the adversary creates a large number of stake pools. Honest players

cannot immediately identify whether a pool is adversarial, so these pools could appear

legitimate and (honest) users might be convinced to delegate to them, thus increasing

the adversarial stake ratio. This is an inherent problem to decentralized PoS systems, as

no form of external identification exists and an adversary can easily create a large num-

ber of staking keys and registration certificates. A potential countermeasure is to have

pool leaders commit (some of) their own stake to their pool. In our setting, this method

can be facilitated via an extra field in the delegation certificate’s metadata, which iden-

tifies the leader’s addresses and funds, which are committed to the pool. Evidently, as

long as these funds are locked in the corresponding addresses, a malicious leader cannot

use them for multiple pool commitments. While this does not directly prevent a Sybil

attack, it does force the attacker to commit some stake to its pools, hence bounding its

identity production capabilities.

Replay Attacks. Another important consideration is replay protection. Replay at-

tacks are prominent in account-based ledgers, where an adversary may re-publish past

transaction. For instance, suppose Alice sends 𝑥 assets from her address-account 𝛼 to

Bob. After the payment is published, 𝛼 controls 𝑦 = 𝑧 −𝑥 assets, 𝑧 being the funds that

𝛼 controlled before Alice made the payment. In a replay scenario, Bob re-publishes this

payment, such that a further amount 𝑥 of funds is sent from Alice’s account 𝛼 to Bob’s.

The same vulnerability exists against the certificates of our scheme. For instance, an

attacker can re-publish a certificate to forcefully change a user’s delegation choice. To

solve this issue, we employ an address whitelist. Specifically, each certificate defines the

addresses allowed to publish it. Naturally, this scheme assumes that the wallet knows

these addresses a priori. Next, during certificate verification, a party checks whether it

is published in a transaction issued by a whitelisted address. To replay the certificate, the

adversary would then need to obtain the private payment key of one of the whitelisted

addresses. Notably, our solution requires no state to be maintained by the verifiers,

as the information needed to counter a replay attack, i.e., the address whitelist, exists

in the certificate itself. Therefore, there is no the need to parse the entire ledger or

maintain extra local state, as is the case with counter-based replay protection mecha-

nisms [Eth18a].

Chapter 4. Account Management in Proof-of-Stake Ledgers 85

4.7.6 Modes of Execution

Our final contribution is a set of modes of operation of a PoS wallet.

Regular. This beingmost straightforwardwallet deploymentmethod, a regular wallet

is bootstrapped with a base address 𝛼0 and its stake is managed by a key (vks,sks). Af-
ter 𝛼0 receives its first assets, the wallet may perform staking actions by using (vks,sks).
To perform staking on its own, the wallet publishes a delegation certificate Σ that del-

egates to its own key (vks,sks). Subsequent addresses are pointer addresses to Σ, so

eventually all addresses are managed by the same staking key. When the user wishes

to delegate to a staking pool, identified by the key vks𝑃 , the wallet simply publishes a

certificate Σ𝑑 delegating from vks to vks𝑃 .

Offline with Cold Staking. This wallet lives in an offline device, e.g., on paper. It is

rarely accessed for payments, but regularly performs staking actions. It is bootstrapped

similarly to the regular wallet and, since its payment keys are stored offline, the staking

keys are managed as follows:

• basic security: the staking key (vks,sks), which manages all addresses, is online; in

case sks is compromised, the user accesses the payment keys and sends the funds

to new addresses, controlled by a new staking key;

• enhanced security: the wallet creates a certificate Σ′, which delegates from vks
to the “hot” key vksℎ; after Σ′ is published, the user stores (vks,sks) offline and
(vksℎ,sksℎ) online; in case (vksℎ,sksℎ) is compromised, (vks,sks) is used to del-

egate to a new “hot” key, without requiring access to the wallet’s payment keys.

Enhanced Unlinkability of Addresses. This wallet aims at a higher level of pri-

vacy, with each address managed by a single staking key. Therefore, to change its dele-

gation profile, the wallet creates a certificate for each address. Additionally, it achieves

different security guarantees as follows:

• online: the wallet is online and creates only pointer addresses, which point to

the stake pool’s registration certificate; to re-delegate, it creates new pointer ad-

dresses and moves the funds from the old to the new addresses;

• offline: the payment keys are stored offline, so the wallet creates base addresses,

each managed by a unique staking key, and keeps the staking keys online; to re-

delegate, it publishes a new certificate for each address.

Chapter 4. Account Management in Proof-of-Stake Ledgers 86

The Stake Pool’s Wallet. A stake pool’s wallet performs only staking actions, so

its key (vks𝑃 ,sks𝑃) is managed as follows:

• basic security: the key pair (vks𝑃 ,sks𝑃) is stored online and is used directly for

staking; in case of compromise, the wallet creates a new staking key while, for

practical purposes, an alert mechanism should exist to notify the users to re-

delegate their stake to the new key;

• enhanced security: the wallet creates a lightweight certificate Σ𝑙, which delegates

to a “hot” key vks𝑃ℎ, and then stores (vks𝑃 ,sks𝑃) offline, while using (vks𝑃ℎ,sks𝑃ℎ)
and Σ𝑙 for staking; if (vks𝑃ℎ,sks𝑃ℎ) is compromised, the wallet creates a new hot

key (vks′
𝑃ℎ,sks′

𝑃ℎ) and a new lightweight certificate Σ′
𝑙 , which delegates from

(vks𝑃 ,sks𝑃) to vks′
𝑃ℎ and includes a higher counter compared to Σ𝑙, using them

for staking instead.

We note that, in particular, the stake pool’s wallet is further explored in the upcoming

chapter on collective stake pools.

4.8 Discussion

Our framework offers a range of choices for embedding information in PoS addresses, as

well as enabling multiple address types. The former allows the addition of metadata into

the addresses, including keys for staking and spending and device and account identification

tags. The latter gives the ability to various players, e.g., enterprises such as exchanges,

to operate using well-crafted, special-purpose addresses that are fit for special needs.

These features embrace a wide range of the desiderata outlined in Section 4.1. Address

Non-Malleability is addressed during the address generation phase, described in detail

in Section 4.2. Moreover, the two types of keys, for payment and staking, cover the

need for Staking and Spending Separation, whereas Key Exposure Mitigation is achieved

by providing the flexibility to issue new delegation certificates using the “staking action”

interface, in case the staking key of the delegate is compromised. Address Uniqueness

is addressed by the checks that the functionality performs upon receiving a possible

address from the adversary. Additionally, the flexibility on defining attributes allows

for Multiple Devices Support and Address Recovery, by constructing special tags that are

embedded in the address. Furthermore, Delegation Verification is possible by obtaining

the delegation certificates that pertain to its staking key. Another advantage of this design

is the Cost Effectiveness of the delegation mechanism, assigning and changing a delegate at

Chapter 4. Account Management in Proof-of-Stake Ledgers 87

the cost of only one transaction. The delegation mechanism also allows a party to prove

that it has the right to append the ledger, although possibly restricting Chain Delegation.

Finally, our framework enables a smooth bootstrapping delegation process, by allowing

an initial delegation assignment phase which depends on the implementation details of

the ledger.

Notably, our desiderata revolve primarily around key management and address gen-

eration. Therefore, we don’t capture network reliability or availability requirements,

but rather assume an abstract ledger model, which satisfies persistence and liveness in a

synchronous setting. This allows us to focus on address and signature generation, while

treating the other components of the system as black boxes, which presumably satisfy

the required properties. This is evident in Section 4.7, which assumes a generic ledger

model, abstracted as a set of variables and algorithms. Nonetheless, a more rigorous

analysis on the incorporation of our wallet core in a complete wallet is an important next

step. Such treatment could formally capture security on all layers, i.e., key management,

consensus, network, etc. A possible path towards this goal could propose a variant of

ℱCoreWallet with key-evolving signatures, which would replace ℱKES in a protocol like

Ouroboros Praos [DGKR18], followed by a rigorous proof of security of this consensus

protocol variant.

Chapter 5

Collective Stake Pools

Both PoW and PoS ledgers are economies of scale, favoring parties with large amounts

of participating power. One reason is poorly-designed incentives, resulting in dispro-

portionate power accumulation [KKNZ19, FKO+19]. Another is temporal discounting,

i.e., the tendency to disfavor rare or delayed rewards [RL11]. Specifically, in Bitcoin,

a party is rewarded for every block it produces, so parties with insignificant amounts

of power are rarely rewarded. In contrast, accumulating the power of multiple small

parties in “pools” yields a steadier reward.

As a result, these systems often see the formation of collaborative entities of par-

ticipants. In PoW systems, this takes the form of mining pools.1 Similarly, PoS systems

often opt for stake pools, i.e., collaborative entities comprising of multiple stakeholders,

which allow a party to earn rewards more regularly, compared to participating on an

individual basis. Particularly in PoS, delegation to stake pools is often preferred over

“pure” PoS, where parties act independently, as the ledger’s performance and security

is often better under fewer participants. For instance, PoS systems require participants

to be constantly online, since abstaining is a security hazard; this requirement is more

easily guaranteed within a small set of dedicated delegates.

However, a major drawback of existing stake pool designs, including our scheme

of Chapter 4, is that they are typically managed by a single party, i.e., the pool oper-

ator. This party participates in consensus, claims the rewards offered by the system,

and then distributes them among the pool’s members (after subtracting a fee). How-

ever, the operator is a single point of failure. In this chapter, we extend the results of

Chapter 4 by exploring a design which allows players to jointly form a collective pool,

186% of Bitcoin’s hashing power and 83% of Ethereum’s hashing power are controlled by 5 entities
each. (https://miningpools.com; May 2021)

88

https://miningpools.com

Chapter 5. Collective Stake Pools 89

i.e., a conclave. This design assumes no single operator, minimizing excess fees, and

trust and security concerns, altogether. Collective stake pools also promote a more

fair and decentralized environment. In existing incentive schemes [BKKS20], operators

who can pledge large amounts of stake to the pool are preferred. Consequently, the

system favors a few major pool operators and, in the long run, its wealth is concen-

trated around them, resulting in a “rich get richer” situation. Although this problem

is inherent in all decentralized financial systems [KKNZ19], a well-designed collective

pool may offset the stakeholder imbalance and slightly decelerate this tendency. Espe-

cially in PoS systems, a well-designed pool mechanism can prevent attacks observed on

PoW [JLG+14, WC14, LJG15].

Related Work. In cryptographic literature, pools are mostly treated from an en-

gineering perspective. In PoW systems, SmartPool [LVTS17] is a notable design of a

distributed mining pool for Ethereum, which, similar to our work, utilizes smart con-

tracts for reward distribution. On the PoS domain, Ouroboros [KRDO17] offers a brief

description of how delegation can be used within the protocol. This idea is expanded

in [KKL20], which provides a formal definition of PoS wallets and includes stake pool

formation method via certificates. However, the pool’s management is again central-

ized around the operator; our work extends this line of work by enabling the formation

of a collective pool. Another work, orthogonal to ours, by Brünjes et al. [BKKS20] con-

siders the incentives of distributing rewards among stake pools and aims to incentivize

the creation of a (pre-defined) number of pools. However, it assumes that the pool op-

erator commits part of their stake to make the pool more appealing, thus favoring larger

pool operators. Our work eases such wealth concentration tendencies by enabling a

collective pool to be equally competitive to a centralized one.

Contributions. The core contribution of this chapter is the ideal functionality ℱ𝑝𝑜𝑜𝑙,

a simulation-based security definition of collective stake pools, which captures the se-

curity properties of our collective pool scheme. We then describe 𝜋𝑝𝑜𝑜𝑙, a distributed

protocol executed by a set of 𝑛 parties ℙ which realizes ℱ𝑝𝑜𝑜𝑙. A major consideration

and performance enhancement of our design is load balancing of transaction verification.

Each transaction is verified by a (deterministically elected) committee of parties, whose

size is a tradeoff between balancing workload, i.e., not requiring each party to verify

every transaction, and reducing trust on the chosen validator(s). We thus construct a

distributed mempool, i.e., a collectively managed set of unpublished transactions, s.t. if

Chapter 5. Collective Stake Pools 90

a majority of the committee’s members are honest, transaction verification is secure.

5.1 Desiderata

Our design assumes a group of stakeholders who jointly create a stake pool without a

single operator. Since large stakeholders typically form pools on their own, our protocol

concerns smaller stakeholders, who could otherwise not participate directly. Therefore,

our design could e.g., be appealing to a group of friends or colleagues, who aim for a

more steady reward ratio without relying on a third party. Importantly, it should operate

in a trustless environment as, unfortunately, even in these scenarios, trust is not a given.

Notably, our targeted audience is parties who wish to actively participate, i.e., always

be online to perform the required consensus actions; parties who wish to remain offline

may instead opt for delegation schemes [Com18, KKL20].

In the absence of a central party, the responsibility of running the pool is shared

among all pool’s members, requiring some level of coordination which may be cum-

bersome. For instance, if the protocol requires unanimous actions, a single member

could halt the pool’s operation. To ensure good performance, the pool should allow a

subset (of a carefully chosen size) to act on behalf of the whole group. The choice of

such subsets depends on each party’s “weight”, which is in proportion to their stake. In

summary, we have the following initial assumptions, which form the basis for outlining

our work’s desiderata:

• small number of parties: a collective pool is operated by a small group of players;

• small stake disparity: the profiles of the collective pool’s members are similar, i.e.,

they contribute a similar amount of stake to the pool;

• stake proportion as “weight”: each party is assigned a weight for participating in the

pool’s actions, relative to their part of the pool’s total stake.

Next, we provide an exhaustive list of basic requirements of a collective stake pool.

We note that an admissible party set is a set of parties with enough stake, i.e., above a

threshold of the total pool’s stake which is agreed upon during the pool’s initialization.

To the extent that some desiderata are conflicting, our design will aim to satisfy as many

requirements as possible:

• Proportional Rewards: the claim of each member on the entire pool’s protocol

rewards should be proportional to their individual contribution.

Chapter 5. Collective Stake Pools 91

• Joint Control of Rewards: the members of a pool should jointly control the access

to its funds.

• Unilateral Reward Withdrawal: at any point in time, a stakeholder should be able to

claim their reward, accumulated up to that point, without necessarily interacting

with other members of the pool.

• Permissioned Access: new users can join the pool following agreement by an ad-

missible set of pool members.

• Robustness against Aborting: the pool should not fail to participate in consensus,

unless an admissible set of members aborts or is corrupted.

• Public Verifiability: stake pool formation and operation should be publicly verifiable

(s.t. consensus could take into account the aggregate pool’s stake).

• Stake Reallocation: users should freely change their personal stake allocated to the

pool, without interacting with other members of the pool.

• Parameter Updates: an admissible set of parties should be able to update the stake

pool’s parameters.

• Force Removal: an admissible set of parties should be able to remove a member

from the pool.

• Pool Closing: an admissible set of parties should be able to permanently close the

stake pool.

• Prevention of Double Stake Allocation: a party should not simultaneously commit

the same stake to two different stake pools.

5.2 Execution Model

In our setting, the ledger’s maintainers are the stake pools. An adversary can break the

ledger’s properties by corrupting a set of stake pools which are allocated a majority of

the total stake. Consequently, since we assume that the majority of stake is owned by

honest stakeholders, the adversary needs to corrupt at least one pool to which honest

players delegate. Especially in the collective setting, the adversary may control a subset

of the pool’s members, although not a majority of them. Therefore, our work considers

adversaries who attempt to violate the security of a collectively-owned stake pool while

controlling aminority of its members. Security violations include producing invalid blocks

or transactions, as well as abstaining from join the consensus protocol.

In terms of message delivery, we assume a synchronous network. As such, the

adversary may delay messages up to an upper bound. This assumption will prove par-

Chapter 5. Collective Stake Pools 92

ticularly useful in the implementation of the collective pool protocol, during which par-

ticipants employ consensus and broadcast algorithms. We note that, although this as-

sumption is realizable in a setting where parties are well-connected, it does not cover

possible real-world threats, such as eclipse attacks. Nonetheless, exploring variations of

the collective pool functionality and protocol designs over semi-synchronous or asyn-

chronous networks presents an interesting problem, which would offer a more robust

implementation.

5.2.1 Weighted Threshold Digital Signatures

In a weighted threshold digital signature scheme [MPSV99, Sha79], each party 𝒫 is as-

sociated with a (integer) weight 𝜔[𝒫] ≥ 0, where 𝜔 is a mapping of players to weights.

A signature can be produced by any set of keys, the aggregate weight of which is above

the defined threshold. The weighted threshold signature scheme (Definition 13) is con-

structed by combining a digital signature scheme (Definition 2) with a weighted threshold

secret sharing scheme (Definition 12). Additionally, standard threshold signatures is a

special case of the weighted variant, with 𝜔[𝒫] = 1 for every party 𝒫.

Definition 12 (Weighted Threshold Secret Sharing). A (𝑇 ,𝑛,𝜔)-threshold secret shar-

ing of a secret 𝑥 consists of 𝑛 shares 𝑥1,…,𝑥𝑛, each associated with a weight 𝑤1,…,𝑤𝑛,

such that an efficient algorithm exists, that takes as input a set of shares 𝐵, with ∑𝑖∈𝐵 𝑤𝑖 >
𝑇 , and outputs the secret value 𝑥. Any set of shares 𝐵 with ∑𝑖∈𝐵 𝑤𝑖 ≤ 𝑇 cannot obtain

any information about the secret 𝑥.

Definition 13 (Weighted Threshold Signature). Given a signature schemeΣ, a (𝑇 ,𝑛,𝜔)-
threshold signature scheme Σthresh = ⟨ThreshKeyGen,ThreshSign,ThreshVerify⟩, given
𝑛 parties 𝒫1,…,𝒫𝑛 ∈ 𝒫, is defined as:

• ThreshKeyGen(1𝜅,𝜔) → (vk,sk1,…,sk𝑛): given the security parameter 𝜅, outputs
a public key vk and a list of private keys 𝕂 = [sk1,…,sk𝑛] which form a (𝑇 ,𝑛,𝜔)-
threshold secret sharing of sk; the pair (vk,sk) has the same distribution as the keys

output by KeyGen of Definition 2;

• ThreshSign(𝑚,𝐵) → 𝜎: given a message 𝑚 and a set of private keys 𝐵, 𝐵 ⊆ 𝕂,

outputs a signature 𝜎;

• ThreshVerify(𝑚,vk,𝜎) → {0,1}: a deterministic algorithm that, given a message

𝑚, a public key vk, and a signature 𝜎 outputs 1 if a signature is valid w.r.t. message

𝑚 and verification key vk (resp. 0 if the signature is invalid).

Chapter 5. Collective Stake Pools 93

A (𝑇 ,𝑛,𝜔)-threshold signature scheme Σthresh is EUF-CMA if it presents the properties

of Definition 2 and the following:

Threshold Completeness: For any message 𝑚, it holds:

Pr[(vk,𝕂) ← ThreshKeyGen(1𝜅,𝜔),𝜎 ← ThreshSign(𝑚,𝐵),
∑
𝑘∈𝐵

𝑤𝑘 > 𝑇 ∶ 0 ← Verify(𝑚,𝜎,vk)] ≤ negl(𝜅)

and

Pr[(vk,𝕂) ← ThreshKeyGen(1𝜅,𝜔),𝜎 ← ThreshSign(𝑚,𝐵),
∑
𝑘∈𝐵

𝑤𝑘 ≤ 𝑇 ∶ 1 ← Verify(𝑚,𝜎,vk)] ≤ negl(𝜅)

where all the probabilities are computed over the random coins of the key generation and

sign algorithms.

5.2.2 Transactions, Blocks, and the Global Ledger

Our protocol utilizes two features of the Kachina [KKK21b] framework: i) the formal-

ization of the ledger and ii) smart contracts.

The Simple Ledger Functionality. Our collective pool protocol interacts with a

ledger functionality in a hybrid execution. One option is the formalization of Bitcoin’s

ledger from [BMTZ17]. However, this functionality is local, while we would prefer a

global functionality, following the Global UC Framework [CDPW07], hence we will use

the 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟 functionality from Kachina [KKK21b]. The functionality is available

in Figure 5.1, where ≺ defines the prefix operation, i.e., Ω ≺ Ω′ means the state Ω is

included in Ω′, and, for readability and consistency purposes, we rename transaction (𝜏)
to block (𝑏).

The𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟 Functionality is generic enough to abstract transactions and blocks,

focusing on the ledger’s properties. However, in our setting we need to define these

objects, in order to better formulate a real-world blockchain.

In this chapter, a transaction is 𝜏 = ⟨𝛼𝑠,𝛼𝑟,𝑣,𝑓⟩, where i) 𝛼𝑠,𝛼𝑟 ∈ {0,1}∗ are the

sender’s and receiver’s addresses respectively, ii) 𝑣 ∈ ℝ is the value transferred from 𝛼𝑠
to 𝛼𝑟, and iii) 𝑓 ∈ ℝ is the fees of the transaction. A block consists of an ordered list of

transactions. To organize transaction in blocks, we assume a function blockify which,

given a set of transactions and a chain, returns a block which can extend the chain, i.e.,

satisfies the validity requirements of the system.

Chapter 5. Collective Stake Pools 94

The functionality keeps a state Ω and a mapping 𝑀 of parties to states, both

initially empty.

• When receiving a message (SUBMIT, 𝑏) from a party 𝑝, query 𝒜 with

(BLOCK, 𝑏).

• When receiving a message READ from a party 𝑝, return 𝑀(𝑝); if 𝑝 is 𝒜,

it returns Ω.

• When receiving a message (EXTEND,Ω′) from 𝒜, set Ω ← Ω||Ω′.

• When receiving a message (ADVANCE,𝑝,Ω′) from 𝒜, if 𝑀(𝑝) ≺ Ω′ ≺ Ω
then set 𝑀(𝑝) ← Ω′.

Global Ledger Functionality 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟

Figure 5.1: The Simple Global Ledger Ideal Functionality.

Reward Management via Smart Contracts. We also employ the formal model

of smart contracts from [KKK21b]. Thismodel considers smart contracts from a privacy-

preserving perspective. However, it also provides a UC definition of standard smart

contracts, consisting of the universal machine 𝒰, which acts as the oracle over the

ledger’s state, and the core contract Γ, as illustrated by Figure 5.3 adapted to our stake

pool design. In our setting, the latter relates directly to the management of the rewards

for the members of the pool, and therefore it is presented as an auxiliary (reward) func-

tionality Γ𝑟𝑒𝑤𝑎𝑟𝑑 in Section 5.4.2.

Delegation and Stake Pools. We utilize the UC Model for delegated PoS sys-

tems, as presented in Chapter 4. This framework partially fulfills our earlier desiderata.

In particular, Prevention of Double Stake Allocation and Public Verifiabilitty are addressed

by the certificate-based registration and revocation mechanisms. However, the remain-

ing items do not seem immediately solved without further assumptions. For instance,

if the members have the same proportion of shares, a standard threshold signature

scheme could address more of our desiderata, e.g., Offline and Online Participation, Pool

Proportional Rewards, Joint Control of Rewards, and Robustness against Aborting. Following,

reconfiguration of the pool is accomplished by regenerating the registration certificate

and the pool’s threshold key. Other desiderata can be approached in a similar fashion.

Chapter 5. Collective Stake Pools 95

Thus, our idea is to generalize the access structure of an efficient threshold signature

scheme to add “weight” capabilities, such that the weights capture the pledged stake

distribution among the pool’s members.

5.3 UCWeighted Threshold Signature

In this section, we present the weighted threshold signature ideal functionality ℱ𝑤𝑡𝑠𝑠
(Figure 5.2). This functionality is used by the Collective Pool Protocol 𝜋𝑝𝑜𝑜𝑙 to collec-

tively sign certificates and new blocks. The functionality ℱ𝑤𝑡𝑠𝑠 is inspired by Almansa

et al. [ADN06], which is in turn inspired by Canetti [Can03]. However, unlike Almansa

et al.and similar to Canetti, during signature verification we consider the case of a cor-

rupted signer, i.e., a set of parties such that the majority (of weights) is corrupted.

ℱ𝑤𝑡𝑠𝑠 interacts with a set of 𝑛 parties. Each party 𝒫𝑖 is associated with an integer

𝑤𝑖, i.e., its weight. ℱ𝑤𝑡𝑠𝑠 also keeps the following, initially empty, tables: i) pubkeys:
tuples ⟨𝑠𝑖𝑑,vk⟩ of 𝑠𝑖𝑑 and a public key vk; ii) sigs: tuples (𝑚,𝜎,vk,𝑓) of message 𝑚, a

signature 𝜎, a public key vk, and a verification bit 𝑓 . The mapping 𝜔[𝒫] → 𝑤𝒫 denotes

the weight of a party 𝒫, while the term 𝜔 also denotes the set of keys the participating

parties.

As highlighted in the definition, completeness, consistency, and unforgeability are en-

forced upon verification, whereas threshold completeness is enforced upon signature gen-

eration. Hence, it should be infeasible to issue a signature unless using keys with enough

weight, i.e., above the threshold 𝑇 .

5.4 The Collective Stake Pool

Our analysis is based on the UC Framework, following Canetti’s formulation of the “real

world” [Can00]. Specifically, we define the collective pool ideal functionality ℱ𝑝𝑜𝑜𝑙,

which distills the required (operational and security) properties; for readability, ℱ𝑝𝑜𝑜𝑙
is divided in two parts, management and consensus participation. The ideal functionality

is realized — in the “real world” — by the distributed protocol 𝜋𝑝𝑜𝑜𝑙, which employs

various established cryptographic primitives, and, therefore, 𝜋𝑝𝑜𝑜𝑙 can described with

auxiliary functionalities. Before proceeding with the functionality’s definition, we first

describe the hybrid execution of 𝜋𝑝𝑜𝑜𝑙 and its building blocks.

Chapter 5. Collective Stake Pools 96

Each message is associated with 𝑠𝑖𝑑 = ⟨𝒫,𝜔,𝑇 ,𝑠𝑖𝑑′⟩, where 𝒫 is the set of

parties, 𝜔 is a mapping of parties to weights, 𝑇 is the collective signature weight

threshold, and 𝑠𝑖𝑑′ is a unique identifier.

Key Generation: Upon receiving (KeyGen,sid) from every honest party 𝒫 ∈
𝒫, send (KeyGen,sid,𝒫) to 𝒮. Upon receiving a response (KeyGen,sid,vk)
from 𝒮, record ⟨𝑠𝑖𝑑,vk⟩ to pubkeys and send (KeyGen,sid,vk) to every party in

𝒫. Following, all messages that do not contain the established 𝑠𝑖𝑑 are ignored.

Signature Generation: Upon receiving (Sign,sid,𝑚) from a party 𝒫, forward

it to 𝒮. After a subset of parties 𝒫′ ⊆ 𝒫 has submitted a Sign message for the

same 𝑚, and upon receiving (Sign,sid,𝑚,𝜎) from 𝒮, check that ∑𝒫∈𝒫′ 𝜔[𝒫] >
𝑇 (Note: This condition guarantees threshold completeness.) Next, if (𝑚,𝜎,vk,0) ∉
sigs (for the key vk that corresponds to 𝑠𝑖𝑑 in pubkeys), record (𝑚,𝜎,vk,1) to
sigs and reply with (Sign,sid,𝑚,𝜎).
Signature Verification: Upon receiving (Verify,sid,𝑚,𝜎,vk′) from 𝒫, for-

ward it to 𝒮. Upon receiving (Verified,sid,𝑚,𝜎,𝜙) from 𝒮, set 𝑓 as next:

1. If vk′ = vk and (𝑚,𝜎,vk,1) ∈ sigs, 𝑓 = 1. (This guarantees completeness.)

2. Else, if vk′ = vk, the aggregate weight of the corrupted parties in 𝒫 is

strictly less than 𝑇 , and (𝑚,𝜎,vk,1) ∉ sigs, 𝑓 = 0 and record (𝑚,𝜎,vk,0)
to sigs. (This guarantees unforgeability, if the aggregate weight of the cor-

rupted parties is below the threshold.)

3. Else, if (𝑚,𝜎,vk′, 𝑏) ∈ sigs, 𝑓 = 𝑏. (This guarantees consistency.)

4. Else, 𝑓 = 𝜙 and record (𝑚,𝜎,vk′,𝑓) to sigs.

Finally, send (Verified,sid,𝑚,𝜎,vk′,𝑓) to 𝒫.

Weighted Threshold Signature Functionality ℱ𝑤𝑡𝑠𝑠

Figure 5.2: Weighted Threshold Signature Ideal Functionality

Chapter 5. Collective Stake Pools 97

5.4.1 Hybrid Protocol Execution

The protocol 𝜋𝑝𝑜𝑜𝑙 is performed by 𝑛 parties, where each party 𝒫𝑖 holds two pairs of

keys: (vk𝒫𝑖
,sk𝒫𝑖

) for issuing transactions, and (vk𝑠𝑖
,sk𝑠𝑖

) for staking operations, e.g.,
issuing delegation certificates (cf. [KKL20]). The public key vk𝑖 is also used to generate

an address 𝛼𝑖. Each pool member 𝒫𝑖 pledges the funds of an address 𝛼𝑖 (which it owns)

to the pool. These funds are the player’s stake in the pool and form the player’s weight

in the weight distribution mapping 𝜔.
We assume the members’ stake, i.e., their weight 𝑤𝑖 in the pool, is public. There-

fore, the weight distribution mapping 𝜔 is also public. Furthermore, each member of

the pool has its own signature key, and can issue standard signatures through a standard

signature scheme. A weighted version for a threshold signature scheme follows by hav-

ing each party holding as many shares, of the original threshold scheme, as its weight.

This approach has the extra advantage that security guarantees of the original scheme

are carried straightforwardly into the weighted version.

Additionally, our construction relies on the consensus sub-protocol 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 to

validate a transaction by the elected committee. Specifically, the collective stake pool

protocol is parameterized by: i) the validation predicate Validate, ii) the permutation

algorithm 𝑎𝑝𝑒𝑟𝑚, and iii) a consensus sub-protocol 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠.

Our (modular) protocol is described in a hybrid world with auxiliary functionalities

for established primitives. The functionality ℱ𝐵𝐶 [HZ10] provides a reliable broadcast

channel to all parties; ℱ𝑐𝑜𝑟𝑒𝑤𝑎𝑙𝑙𝑒𝑡 (cf. Chapter 4) enables delegation to the pool; ℱ𝑤𝑡𝑠𝑠
(cf. Section 5.3) enables weighted threshold signature operations; the Smart Contract

Functionality Γ𝑟𝑒𝑤𝑎𝑟𝑑 realizes the reward distribution mechanism; 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟 is a

global Ledger Functionality [KKK21b]. Finally, we use HYBRID𝑝𝑜𝑜𝑙
𝜋𝑝𝑜𝑜𝑙,𝒜,𝒵 to denote the

{𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟,ℱ𝐵𝐶,ℱ𝑐𝑜𝑟𝑒𝑤𝑎𝑙𝑙𝑒𝑡,ℱ𝑤𝑡𝑠𝑠,Γ𝑟𝑒𝑤𝑎𝑟𝑑}-hybrid execution of 𝜋𝑝𝑜𝑜𝑙 in the

(global) UC Framework.

5.4.2 Part 1: Stake Pool Management

The functionality’s first part (Figure 5.4) includes all operations that are not consensus-

oriented. First, establishing a stake pool consists of two parts, defined as corresponding

interfaces in the ideal functionality. The pool’s members gather and jointly decide to

create a staking pool; they contact each other, e.g., via off-chain direct channels, agree

on the pool’s parameters, and generate its key. Importantly, the participants are aware

of the total number of participants in the pool, as well as their weights. Then, the mem-

Chapter 5. Collective Stake Pools 98

bers of the pool perform a setup protocol and register the new pool via a registration

certificate, which is signed by the pool’s key and published on the ledger. Following,

the pool receives rewards for participating in the consensus protocol. The rewards are

managed by a smart contract and, at any point, each each party can withdraw their part,

which is proportional to the internal stake distribution. Finally, to close the pool, the

members sign and publish a revocation certificate.

In more detail, the functionality ℱ𝑝𝑜𝑜𝑙 interacts with 𝑛 parties 𝒫1,…,𝒫𝑛 and is

parameterized by:

• the validation predicate Validate(⋅, ⋅) which, given a transaction 𝜏 and a chain 𝒞,
defines whether 𝜏 can be appended to 𝒞 (as part of a block);

• the algorithm blockify which, given a set of transactions, serializes them (deter-

ministically) in a block;

• the probability Π𝜃,𝑡,𝑛 that the elected committee, responsible for a transaction’s

verification, is corrupted, dependent on the subselection parameter 𝜃 and the

number of corrupted parties 𝑡 out of 𝑛 total parties.

It also keeps the following, initially empty, variables: i) the signature threshold 𝑇 ;

ii) the public key vk𝑝𝑜𝑜𝑙; iii) the reward address 𝛼𝑟𝑒𝑤𝑎𝑟𝑑; iv) the set of valid and un-

published transactions mempool; v) a mapping of parties to weights 𝑊 ; vi) a table of

signatures sigs.

Gathering and Registration. The first step in creating a pool is the gathering of

parties, in order to collectively create the pool’s public key vk𝑝𝑜𝑜𝑙. Following, the parties

create and publish on the ledger the registration certificate cert𝑟𝑒𝑔, which contains the

following:

• 𝜔: a mapping identifying each member’s weight;

• 𝛼𝑟𝑒𝑤𝑎𝑟𝑑: the address which accumulates the pool’s rewards;

• vk𝑝𝑜𝑜𝑙: the pool’s threshold public key;

• 𝜎𝑝𝑜𝑜𝑙: the signature of ⟨𝜔,𝛼𝑟𝑒𝑤𝑎𝑟𝑑⟩ created by vk𝑝𝑜𝑜𝑙.

Reward Withdrawal. During the life cycle of the pool, a member may want to

withdraw the rewards received up to that point. As per the desiderata of Section 5.1,

any party should be able to do so, without the explicit permission of the other pool’s

members. Additionally, the rewards that each party receives should be proportional to

Chapter 5. Collective Stake Pools 99

its stake, i.e., its weight within the collective pool. Reward withdrawal is implemented

as the smart contract functionality Γ𝑟𝑒𝑤𝑎𝑟𝑑. The contract is initialized with the weight

distribution of the pool’s members and each member’s public key. We assume that the

contract is associated with an address and can receive funds, similar to real-world smart

contract systems like Ethereum [Woo14]. The state transition functionality Γ𝑟𝑒𝑤𝑎𝑟𝑑 is

defined in Figure 5.3 (following the ledger formalization of Section 5.2.2).

Γ𝑟𝑒𝑤𝑎𝑟𝑑 maintains a mapping 𝜔, of parties to weights, and a variable 𝑏.
Initialization: Upon receiving (init,sid,𝜔′), forward it to 𝒮. Upon receiving a

response (init-ok,sid,𝛼𝑠𝑐), set 𝜔 ← 𝜔′ and return (init-ok,sid,𝛼𝑠𝑐).
Balance Update: On receiving (transaction,sid, 𝜏) from 𝒰, such that 𝜏 =
⟨𝛼𝑠,𝛼𝑟,𝑣,𝑓⟩, if 𝛼𝑠 = 𝛼𝑠𝑐 set 𝑏 ∶= 𝑏 −𝑣, else if 𝛼𝑟 = 𝛼𝑠𝑐 set 𝑏 ∶= 𝑏 +𝑣.
Withdrawal: Upon receiving (withdraw,sid,𝛼,𝑓) from the party 𝒫, set 𝑟 =

𝑤𝑝
∑𝑝′∈𝜔 𝑤𝑝′

⋅ 𝑏 and return (transaction,sid, ⟨𝛼𝑠𝑐,𝛼,𝑟,𝑓⟩).

Reward Smart Contract Functionality Γ𝑟𝑒𝑤𝑎𝑟𝑑

Figure 5.3: The pool’s Reward Smart Contract Functionality.

Closing. Eventually, the members halt the operation of the pool. In order to do so,

they revoke the pool’s registration by jointly producing a revocation certificate cert𝑟𝑒𝑣.

The certificate is relatively simple, containing a timestamp 𝑥 announcing the end of the

pool and signed by the pool’s public key vk𝑝𝑜𝑜𝑙.

The first part of our functionality definition is given by Figure 5.4, whereas the man-

agement routines, i.e., the first part of the description, of our protocol construction is

given by Figure 5.5.

5.4.3 Part 2: Participation in Consensus

After a pool is set up, the functionality’s second part (Figure 5.7) considers participation

in the system, i.e., validating transactions and issuing blocks. The pool members con-

tinuously monitor the network for new transactions, which they collect, validate, and

organize in a mempool. As mentioned in the introduction, the pool members remain

online for the entirety of the execution to perform the pool’s operations. Specifically,

when the pool is elected to participate, the mempool’s transactions are serialized and

Chapter 5. Collective Stake Pools 100

Gathering: Upon receiving (gather,sid) from 𝒫, forward it to 𝒮. Af-

ter every party 𝒫𝑖, 𝑖 ∈ [1,𝑛] has submitted gather, upon receiving from 𝒮
(gather-ok,sid,vk𝑝𝑜𝑜𝑙), store 𝑇 and vk𝑝𝑜𝑜𝑙, add all party-weight pairs (𝒫𝑖,𝜔𝑖)
to 𝑊 , and reply with (gather-ok,sid,vk𝑝𝑜𝑜𝑙) to all parties.

Pool Registration: Upon receiving (register,sid,𝑊) from 𝒫, forward it to

𝒮. After all parties 𝒫𝑖, 𝑖 ∈ [1,𝑛] have submitted register, upon receiving from

𝒮 (register-ok,sid,𝛼𝑟𝑒𝑤𝑎𝑟𝑑,𝜎𝑝𝑜𝑜𝑙), set cert𝑟𝑒𝑔 = ⟨(𝑊,𝛼𝑟𝑒𝑤𝑎𝑟𝑑,vk𝑝𝑜𝑜𝑙,𝜎𝑝𝑜𝑜𝑙)⟩.
Then check if∀(𝑚,𝜎,𝑏′) ∈ sigs ∶ 𝜎 ≠ 𝜎𝑝𝑜𝑜𝑙, (cert𝑟𝑒𝑔,𝜎𝑝𝑜𝑜𝑙,0) ∉ sigs; if the checks
hold, insert (cert𝑟𝑒𝑔,𝜎𝑝𝑜𝑜𝑙,1) to sigs. Finally, store 𝛼𝑟𝑒𝑤𝑎𝑟𝑑 and reply with

(register-ok,sid,cert𝑟𝑒𝑔).
Reward Withdrawal: Upon receiving the message (withdraw,sid,𝛼,𝑓)
from 𝒫𝑖, forward it to 𝒮. Then, compute 𝑅 = 𝑤𝒫𝑖

∑𝑛
𝑗=1 𝑤𝒫𝑗

⋅ 𝑅𝑝𝑜𝑜𝑙, where

𝑅𝑝𝑜𝑜𝑙 is the funds of address 𝛼𝑠𝑐 as defined in 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟. Finally, return

(transaction,sid, ⟨𝛼𝑠𝑐,𝛼,𝑅,𝑓⟩).
Closing: Upon receiving (close,sid,𝑥) from 𝒫, forward it to 𝒮. After a

set of parties 𝐵 has submitted close for the same 𝑥, if ∑𝒫∈𝐵 𝑤𝒫 > 𝑇 ,

upon receiving (close-ok,sid,𝜎𝑝𝑜𝑜𝑙) from 𝒮, check if ∀(𝑚,𝜎,𝑏′) ∈ sigs ∶ 𝜎 ≠
𝜎𝑝𝑜𝑜𝑙, (𝑥,𝜎𝑝𝑜𝑜𝑙,0) ∉ sigs; if the checks hold, insert (𝑥,𝜎𝑝𝑜𝑜𝑙,1) to sigs. Finally,
return to all parties (close-ok,sid,cert𝑟𝑒𝑣), with cert𝑟𝑒𝑣 = ⟨𝑥,𝜎𝑝𝑜𝑜𝑙⟩.

Collective Pool Functionality ℱ𝑇 ,𝜔
𝑝𝑜𝑜𝑙 (first part)

Figure 5.4: The first part of theCollective Pool Functionality, parameterizedwith thresh-

old 𝑇 and weight mapping 𝜔, refers to the creation and management of the pool (the

second part is given by Figure 5.7).

Chapter 5. Collective Stake Pools 101

Gathering: Upon receiving (gather,sid), send (KeyGen,sid) to ℱ𝑤𝑡𝑠𝑠, with

𝑠𝑖𝑑 containing the weight mapping 𝜔 and the threshold 𝑇 . Upon receiving the

reply (KeyGen,sid,vk𝑝𝑜𝑜𝑙), return (gather-ok,sid,vk𝑝𝑜𝑜𝑙).
Pool Registration: Upon receiving (register,sid,𝑊), send (init,sid,𝑊)
to Γ𝑟𝑒𝑤𝑎𝑟𝑑 and wait for the reply (init-ok,sid,𝛼𝑟𝑒𝑤𝑎𝑟𝑑). Then, set 𝑚 =
(𝑊,𝛼𝑟𝑒𝑤𝑎𝑟𝑑) and send (Sign,sid,𝑚) to ℱ𝑤𝑡𝑠𝑠. Upon receiving a re-

ply (Sign,sid,𝑚,𝜎𝑝𝑜𝑜𝑙), return (register-ok,sid,cert𝑟𝑒𝑔), where cert𝑟𝑒𝑔 =
⟨(𝑊,𝛼𝑟𝑒𝑤𝑎𝑟𝑑,vk𝑝𝑜𝑜𝑙,𝜎𝑝𝑜𝑜𝑙)⟩.
Reward Withdrawal: Upon receiving (withdraw,sid,𝛼,𝑓), forward it to

Γ𝑟𝑒𝑤𝑎𝑟𝑑. Upon receiving a response (transaction,sid, ⟨𝛼𝑠𝑐,𝛼,𝑟,𝑓⟩) return it.

Closing: Upon receiving (close,sid,𝑥), send (Sign,sid,𝑥) to ℱ𝑤𝑡𝑠𝑠. Upon re-

ceiving a reply (Sign,sid,𝑥,𝜎𝑝𝑜𝑜𝑙), return (close-ok,sid,cert𝑟𝑒𝑣) with cert𝑟𝑒𝑣 =
⟨𝑥,𝜎𝑝𝑜𝑜𝑙⟩.

Collective Pool Protocol 𝜋𝑇 ,𝜔
𝑝𝑜𝑜𝑙 (first part)

Figure 5.5: The first part of the Collective Pool Protocol, which describes the set of

management operations (the second part is given by Figure 5.8).

Chapter 5. Collective Stake Pools 102

published in a block. Under PoS, the pool participates proportionally to its aggregated

member and delegated stake.

To improve performance, we define a distributed mechanism for transaction verifi-

cation, i.e., a distributed mempool. Such load balancing mechanism increases efficiency by

requiring only a subset of the pool’s members to verify each transaction. Notably, this

is in contrast to the standard practice of Bitcoin mining pools, where the pool’s opera-

tor decides the transactions to be mined by its members; instead, our approach further

reduces these trust requirements.

To construct a distributedmempool, we consider a subselectionmechanism to iden-

tify the parties that verify each transaction. This mechanism should be: a) non-interactive

b) deterministic, c) balanced, i.e., every party should be chosen with the same probabil-

ity. Subselection is secure if a majority of the elected committee is honest. However,

since the adversary may corrupt some pool members, this may not always be the case.

We model this uncertainty via the probability Π𝜃,𝑡,𝑛, which depends on the size of the

committee and the power of the adversary among the pool’s members.

A straightforward way to implement subselection is to assume that the pool’s mem-

bers are ordered in a well-defined manner, e.g., lexicographically. Given the ordered list

𝐿 = [𝒫1,𝒫2,…,𝒫𝑛] of pool members, we use a permutation algorithm 𝑎𝑝𝑒𝑟𝑚(⋅, ⋅, ⋅),
which takes two arguments, i) a transaction 𝜏 , ii) a chain 𝒞, and iii) the ordered list of

pool members 𝐿, and outputs a pseudorandom permuted list 𝐿𝜏 . For every transaction

𝜏 and a given chain 𝒞, the committee responsible for verification consists of the 𝜃 first

members in𝐿𝜏 . Naturally, this proposal is rather simple, so alternative, e.g., VRF-based,

mechanisms could be proposed to improve performance.

We note that using𝒞 during the subselection mechanism is important to avoid adap-

tive attacks. Specifically, the chain 𝒞 simulates a randomness beacon, such that at least

one of its last 𝑢 blocks is honest, for some parameter 𝑢. If 𝒞 was not used, the adver-

sary could construct a malicious transaction in such way that the subselected committee

would also be malicious. By using 𝒞 as a seed to the pseudorandom permutation, the

adversary’s ability to construct such malicious transaction is limited. Alternatively, cryp-

tographic sortition [GHM+17a] could be employed to fully handle adaptive adversaries.

The (honest) members need to always have the same view of the distributed mem-

pool; this is achieved via authenticated broadcast. Assuming a Public Key Infrastracture

(PKI), as is our setting, it is possible to achieve deterministic authenticated broadcast in

𝑡 + 1 rounds for 𝑡 adversarial parties [LSP82, PSL80a, DS83]. Each time a party adds a

transaction to its mempool, it broadcasts it, such that, at any point in time, the honest

Chapter 5. Collective Stake Pools 103

members of the pool have the same view of the network w.r.t. the canonical chain

and the mempool of unconfirmed transactions. We remind that, as shown by Garay

et al. [GKKZ11], ℱ𝐵𝐶 can be implemented to ensure adaptive corruptions using com-

mitments. We note that, in existing distributed ledgers, the order with which transac-

tions are added to the mempool does not affect the choice when creating a new block;

for instance, transactions of a new block are typically chosen based on a fee-per-byte

score. If the order of transactions is pertinent, a stronger primitive like Atomic Broad-

cast [DSU04] could be employed.

Following, the committee employs a consensus sub-protocol to agree on the trans-

action’s validity. When a party 𝒫 retrieves a new transaction 𝜏 from the network, it

broadcasts it as above. Then, each party computes the permuted list 𝐿𝜏 . Each party,

which is in the validation committee for 𝜏 , computes locally the validation predicate

and submits its output to the consensus protocol. The consensus protocol should offer

strong validity, i.e., if all honest parties should have the same input bit, they should output

this bit. Finally, the output of the consensus protocol is broadcast to the rest of the pool.

To verify the committee’s actions, a party may request the transcript of the consensus

sub-protocol.

Finally, to compute the probability of electing an honest committee, we have a hy-

pergeometric distribution, with population size 𝑛 and 𝑛 − 𝑡 honest parties, where a

sample of parties of size 𝜃 is chosen without replacement. Thus, the probability of hon-

est committee majority is: Π𝜃,𝑡,𝑛 = 1−∑min(𝜃,𝑡)
𝑣=⌊ 𝜃+1

2 ⌋
(𝑡

𝑣)⋅(𝑛−𝑡
𝜃−𝑣)

(𝑛
𝜃) . Figure 5.6 provides further

intuition on the probability w.r.t. the subselection parameter 𝜃.
Following, Figure 5.7 defines the second part of our functionality, while Figure 5.8

presents the second part of our protocol.

We note that our design satisfies most of the desiderata outlined in Section 5.1.

Some (e.g., pool proportional rewards or stake reallocation) are dependent on the un-

derlying ledger system’s details, therefore are outside of our scope; nevertheless, our

design does not pose restrictions in capturing them. The reward functionality Γ𝑟𝑒𝑤𝑎𝑟𝑑
handles the reward-specific desiderata, while ℱ𝑝𝑜𝑜𝑙’s first part (Figure 5.4) covers the

requirements for permissioned access and closing of the pool. However, ℱ𝑝𝑜𝑜𝑙’s han-

dling of stake reallocation and updating of the pool’s parameters could bemore dynamic,

as it currently requires closing and re-creating a pool with the new parameters.

Chapter 5. Collective Stake Pools 104

1 3 5 7 9 11 13 15
Subselected committee size

0.500

0.625

0.750

0.875

1.000

Ho
ne

st
co

m
m

itt
ee

pr
ob

ab
ilit

y Adversarial
parties

4
7

Figure 5.6: The probability of subselecting an honest committee w.r.t. the committee

size 𝜃, 𝑛 = 15 total parties and ⌊𝑛−1
3 ⌋ and ⌊𝑛−1

2 ⌋ adversarial parties.

5.5 Security Analysis

We now assess the security of our collective pool design. Specifically, Theorem 5 shows

that the protocol 𝜋𝑝𝑜𝑜𝑙 securely realizes the ideal functionality ℱ𝑝𝑜𝑜𝑙, assuming that the

employed cryptographic primitives are secure and that the adversarial power within the

pool is properly bounded.

Theorem 5. The protocol 𝜋𝑝𝑜𝑜𝑙, parameterized by a validation predicate Validate, a
permutation algorithm 𝑎𝑝𝑒𝑟𝑚, and a consensus protocol 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 (cf. Definition 4) securely

realizes ℱ𝑝𝑜𝑜𝑙 with the hybrid execution HYBRID𝑝𝑜𝑜𝑙
𝜋𝑝𝑜𝑜𝑙,𝒜,𝒵 in the global 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟

model, and Π𝜃,𝑡,𝑛 = 1 − ∑min(𝜃,𝑡)
𝑣=⌊ 𝜃+1

2 ⌋
(𝑡

𝑣)⋅(𝑛−𝑡
𝜃−𝑣)

(𝑛
𝜃) , assuming ∑𝒫∈𝑃𝒜

𝑤𝒫 < 𝑇 , where 𝜃 is the

subselection parameter for transaction verification, 𝑃𝒜 is the set of 𝑡 corrupted parties out of

𝑛 total parties, 𝜔 is the weight distribution of the 𝑛 parties, and 𝑇 is the signature threshold.

Proof. The proof is constructed in the UC Framework, so it is simulation-based. As such,

we will show that the environment 𝒵 cannot efficiently distinguish between two execu-

tions, the ideal and the real. The simulator 𝒮 interacts with the ideal functionality ℱ𝑝𝑜𝑜𝑙
in the ideal execution, whereas 𝒜 interacts with 𝜋𝑝𝑜𝑜𝑙 in the real execution. We will

show that, if 𝜋𝑝𝑜𝑜𝑙 does not securely realize the ideal functionality ℱ𝑝𝑜𝑜𝑙, when instan-

tiated with the parameters defined in the theorem, then at least one of the conditions

is violated.

First, we provide the construction for the simulator. 𝒮 runs internally a copy of the

adversary 𝒜. 𝒮 forwards any inputs received from the environment 𝒵 to the internal

Chapter 5. Collective Stake Pools 105

Transaction Verification: Upon receiving (transaction,sid, 𝜏 ,𝜃) from 𝒫𝑖,

forward it to 𝒮. Then send READ to 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟 on behalf of 𝒫𝑖 and wait

for the reply 𝒞. Following, set 𝑡 as the number of corrupted parties; with proba-

bility Π𝜃,𝑡,𝑛 set 𝑏 ∶= Validate(𝜏,𝒞), otherwise (with probability 1−Π𝜃,𝑡,𝑛), send

(transaction-ver,sid, 𝜏) to𝒮, wait for a reply (transaction-ok,sid,𝒞,𝜏,𝑓), and set
𝑏 ∶= 𝑓 . Finally, if 𝑏 = 1, insert 𝜏 to mempool and send (transaction,sid,𝒞,𝜏,𝑏)
to all parties.

Mempool Update: Upon receiving (transaction,sid,𝒞′, 𝜏 ,1) from 𝒫𝑖, for-

ward it to 𝒮. Then send READ to 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟 on behalf of 𝒫𝑖 and wait

for the reply 𝒞. If 𝒞′ ≺ 𝒞 and 𝒫𝑖 is honest, insert 𝜏 to mempool and return

(mempool-updated,sid, 𝜏).
Block issuing: Upon receiving (issue-block,sid) from a party𝒫, forward it to𝒮.
When a set of parties ℙ has submitted (issue-block,sid), if ∑𝑗∈[1,𝑚] 𝑊[𝒫𝑗] > 𝑇 ,

then for every party 𝒫𝑖 ∈ ℙ, send READ to 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟 on behalf of 𝒫𝑖 and

wait for the reply 𝒞𝑖. If all received chains equal, i.e., are the same chain 𝒞, re-
move every 𝜏 inmempool that also exists in𝒞. Then, set 𝑏 = blockify(mempool),
send (issue-block,sid, 𝑏) to 𝒮, and wait for the reply (issue-block,sid, 𝑏,𝜎𝑝𝑜𝑜𝑙).
Following, check if ∀(𝑚,𝜎,𝑏′) ∈ 𝑇 ∶ 𝜎 ≠ 𝜎𝑝𝑜𝑜𝑙, (𝑏,𝜎𝑝𝑜𝑜𝑙,0) ∉ 𝑇 ; if the checks

hold, insert (𝑏,𝜎𝑝𝑜𝑜𝑙,1) to 𝑇 . Finally, reply with (block,sid, 𝑏,𝜎𝑝𝑜𝑜𝑙).

Collective Pool Functionality ℱ𝑇 ,𝜔
𝑝𝑜𝑜𝑙 (second part)

Figure 5.7: The second part of the proposed Pool Functionality, which defines the

consensus participation operations.

Chapter 5. Collective Stake Pools 106

Transaction Verification: Upon receiving (transaction,sid, 𝜏 ,𝜃), send READ
to 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟 and wait for the reply 𝒞. Then, set 𝑏 = Validate(𝒞,𝜏), com-

pute 𝐿′ = 𝑎𝑝𝑒𝑟𝑚(𝜏,𝒞,𝐿) and initiate protocol 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 with the 𝜃 first par-

ties in 𝐿′ with input 𝑏. Upon computing the output of 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠, 𝛽, send
(transaction,sid,𝒞,𝜏,𝛽) to ℱ𝐵𝐶 and return it.

Mempool Update: Upon receiving (transaction,sid,𝒞′, 𝜏 ,1), 𝒫𝑖, send READ
to 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟 and wait for the reply 𝒞. If 𝒞′ ≺ 𝒞, insert 𝜏 to mempool and
return (mempool-updated,sid, 𝜏).
Block Issuing: Upon receiving (issue-block,sid), send READ to 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟
and wait for the reply 𝒞. For every 𝜏 in mempool, if 𝜏 is also in 𝒞, then remove

𝜏 from mempool. Next, set 𝑏 = blockify(mempool) and send (Sign,sid, 𝑏) to

ℱ𝑤𝑡𝑠𝑠. Upon receiving a reply (Sign,sid, 𝑏,𝜎𝑝𝑜𝑜𝑙), return (block,sid, 𝑏,𝜎𝑝𝑜𝑜𝑙).

Collective Pool Protocol 𝜋𝑇 ,𝜔
𝑝𝑜𝑜𝑙 (second part)

Figure 5.8: The second part of our protocol, which describes the set of operations for

consensus participation.

copy of 𝒜, and vice versa, and behaves as follows:

• Gathering: Upon receiving the message (gather,sid) for all parties 𝒫𝑖, 𝑖 ∈ [1,𝑛]
from ℱ𝑝𝑜𝑜𝑙, send (KeyGen,sid) to ℱ𝑤𝑡𝑠𝑠 with the appropriate 𝑠𝑖𝑑. Upon re-

ceiving the reply (KeyGen,sid,vk𝑝𝑜𝑜𝑙), record vk, and return (gather-ok,sid,vk)
to ℱ𝑝𝑜𝑜𝑙.

• Pool Registration: Upon receiving the 𝑛 messages (register,sid,members) from

ℱ𝑝𝑜𝑜𝑙, send (init,sid,members) to Γ𝑟𝑒𝑤𝑎𝑟𝑑 and wait for (init-ok,sid,𝛼𝑟𝑒𝑤𝑎𝑟𝑑).
Then send (Sign,sid,𝑚) toℱ𝑤𝑡𝑠𝑠 with𝑚 = (members,𝛼𝑟𝑒𝑤𝑎𝑟𝑑). Upon receiving

a reply (Sign,sid,𝑚,𝜎𝑝𝑜𝑜𝑙), register (𝑚,𝜎𝑝𝑜𝑜𝑙) and return to ℱ𝑝𝑜𝑜𝑙 the message

(register-ok,sid,𝛼𝑟𝑒𝑤𝑎𝑟𝑑,𝜎𝑝𝑜𝑜𝑙).

• Closing: Upon receiving (close,sid,𝑥) from ℱ𝑝𝑜𝑜𝑙, on behalf of a set of parties

ℙ, send the message (Sign,sid,𝑥) to ℱ𝑤𝑡𝑠𝑠 on behalf of each party in ℙ. Upon
receiving a reply (Sign,sid,𝑥,𝜎𝑝𝑜𝑜𝑙), record 𝜎𝑝𝑜𝑜𝑙 and return (close-ok,sid,𝜎𝑝𝑜𝑜𝑙)
to ℱ𝑝𝑜𝑜𝑙.

• Transaction Verification: Upon receiving (transaction-ver,sid, 𝜏) from ℱ𝑝𝑜𝑜𝑙, for-

Chapter 5. Collective Stake Pools 107

ward it to the internal copy of 𝒜, wait for the output (transaction-ok,sid,𝒞,𝜏,𝑓)
from 𝒜 and forward it to ℱ𝑝𝑜𝑜𝑙.

• Block issuing: Upon receiving (issue-block,sid, 𝑏) from ℱ𝑝𝑜𝑜𝑙, send (Sign,sid, 𝑏) to
ℱ𝑤𝑡𝑠𝑠. Upon receiving a reply (Sign,sid, 𝑏,𝜎𝑝𝑜𝑜𝑙) and record (𝑏,𝜎𝑝𝑜𝑜𝑙). Finally,
return (issue-block,sid, 𝑏,𝜎𝑝𝑜𝑜𝑙) to ℱ𝑝𝑜𝑜𝑙.

• Party corruption: When the adversary 𝒜 corrupts a party 𝒫, 𝒮 corrupts the same

party in the ideal process and hands to 𝒜 its internal state.

• Global ledger update: When 𝒜 sends (ADVANCE,𝒫,Σ) to the global ledger

𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟,𝒮 does so in the ideal world; similarly, when𝒜 sends (EXTEND, 𝑏)
to 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟, so does 𝒮.

• Signature generation: When the adversary 𝒜 requests a signature on some mes-

sage 𝑚, 𝒮 sends (Sign,sid,𝑚) to ℱ𝑤𝑡𝑠𝑠; upon receiving the reply (Sign,sid,𝑚,𝜎),
it returns 𝜎 to 𝒜.

The first observation is that 𝒮 needs to ensure that a party 𝒫 has the same view of

the ledger as in the real world. Therefore, it advances parties only when the real world

adversary 𝒜 does so.

To prove the theorem, we assume that 𝜋𝑝𝑜𝑜𝑙 does not realize ℱ𝑝𝑜𝑜𝑙, i.e., there

exists adversary 𝒜 such that, for every simulator 𝒮, there exists environment 𝒵 that

can distinguish between the ideal world (of ℱ𝑝𝑜𝑜𝑙 and 𝒮) and the real world (of 𝜋𝑝𝑜𝑜𝑙
and 𝒜). Following, we show that 𝒮 violates the security of one of the primitives used

by 𝜋𝑝𝑜𝑜𝑙, i.e., the consensus protocol 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 and the weighted threshold signature

scheme Σthresh.

We build an algorithm 𝒟 that breaks the security of the cryptographic primitives as

follows. 𝒟 runs a simulated copy of 𝒵 and simulates for 𝒵 the ideal environment, i.e.,

𝒟 acts both as ℱ𝑝𝑜𝑜𝑙 and 𝒮 on 𝒵’s messages.

Similar to 𝒮, 𝒟 runs a simulated copy of 𝒜. When running Gathering to obtain the

threshold keys, instead of running ThreshKeyGen, 𝒟 hands 𝒜 the public key vk which

is obtained as the input from 𝒮. To obtain a signature 𝜎 on a message 𝑚, 𝒟 hands 𝑚
to its oracle, instead of using ThreshSign. When 𝒜 advances the state of party 𝒫 in the

global ledger 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟, 𝒟 does so as well.

Regarding the consensus subprotocol 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠, we consider the case when 𝒵
activates an uncorrupted party 𝒫 with input a transaction 𝜏 via the interface Transaction

Verification. At that point, 𝒟 computes 𝑏 = Validate(𝒞,𝜏), where 𝒞 is the state of party

Chapter 5. Collective Stake Pools 108

𝒫 in the global ledger 𝒢𝑠𝑖𝑚𝑝𝑙𝑒𝐿𝑒𝑑𝑔𝑒𝑟. Next, 𝒟 checks the output 𝑏′ in the real world

(where 𝒜 operates). If the majority of the committee elected to validate 𝜏 is honest

and 𝑏 ≠ 𝑏′, then 𝒟 retrieves the transcript of 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠, run for the validation of 𝜏 by

𝒜, and outputs it (observe that this transcript is represents an execution of 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠
where its security breaks).

To analyze the success probability of 𝒟, we consider the event 𝐸, where 𝑏 ≠ 𝑏′,

as defined above. Since 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 is secure as long as a majority of participants is

honest, the executions of the real world, i.e., the interaction of 𝒵 with 𝒜 and 𝜋𝑝𝑜𝑜𝑙,

and the ideal world (resp. 𝒮 and ℱ𝑝𝑜𝑜𝑙) are statistically close. If we are guaranteed

that 𝒵 distinguishes between the two executions, then 𝐸 occurs with non-negligible

probability. Finally, from the point of view of 𝒜 and 𝒵, the interaction with 𝒟 is the

same as with an interaction with protocol 𝜋𝑝𝑜𝑜𝑙 in the real world.

Regarding the weighted threshold signatures, we note that the functionality ℱ𝑝𝑜𝑜𝑙
performs the same checks regarding signature issuing as ℱ𝑤𝑡𝑠𝑠. In fact, only signature

generation is performed by the collective pool; signature verification should be em-

ployed when advancing the ledger state, i.e., upon adopting new blocks, or when vali-

dating a certificate. Therefore, the security of ℱ𝑤𝑡𝑠𝑠 ensures that 𝒵 cannot distinguish

the two executions (real vs. ideal world) w.r.t. the weighted threshold signatures.

Regarding block issuing we consider the event 𝐸′, where a set of parties controlling

a majority of the pool’s stake initiate block issuing, but no signed block is output. In

that case, either the signature issuing of Σthresh fails or the parties locally produce a

different block 𝑏, i.e., their mempool is not synchronized. Regarding the former, the

same analysis on signature issuing as above applies. Regarding the latter, if two honest

parties hold a different mempool at the point when blockify is used, either their ledger

state 𝒞 is different or their mempool is different. This implies that ℱ𝐵𝐶 fails for at least

one transaction 𝜏 , i.e., an honest party inserts 𝜏 in its mempool and, after 𝜏 is sent to

ℱ𝐵𝐶 , at least one other honest party fails to also insert it to its mempool. However,

this is impossible, since the simulator ensures the former and ℱ𝐵𝐶 ensures the latter.

Finally, the permutation algorithm 𝑎𝑝𝑒𝑟𝑚 is executed locally by each party, therefore

the adversary cannot affect its output. Additionally, the probability Π𝜃,𝑡,𝑛 is computed

following the analysis of Section 5.4.3.

Chapter 5. Collective Stake Pools 109

5.6 Incentives Analysis

Although, as shown in Theorem 5, 𝜋𝑝𝑜𝑜𝑙 is secure, it is unclear whether rational users

will opt for using it. In this section, we discuss the incentive compatibility of 𝜋𝑝𝑜𝑜𝑙. We

identify its shortcomings and propose a minor change, such that rational members can-

not gain more rewards by deviating from it.

First, we consider the cost of each operation performed in 𝜋𝑝𝑜𝑜𝑙. Signing operations

does not incur any cost, thus pool registration and revocation are cost-free. Block pro-

duction depends on the internal workings of blockify. For instance, solving the Knapsack
problem can be expensive, while a greedy algorithm that prioritizes high-fee transactions

is typically not. Therefore, without loss of generality, we also assume that block pro-

duction is cost-free. However, both mempool update and transaction verification incur

costs 𝐶𝑚𝑢 and 𝐶𝑡𝑣 respectively. A mempool consists of millions of transactions and

verifying them requires an accurate view of the ledger. Thus, both objects may require

significant amounts of computations and storage.2

We focus on the profit of each member, i.e., the rewards subtracted by the cost of

executing 𝜋𝑝𝑜𝑜𝑙. The core observation is that a member 𝒫 receives 𝑅𝒫 = 𝑤𝒫
∑𝒫′∈𝜔 𝑤𝒫′

of

the total pool’s rewards regardless of its performance. For instance, if 𝒫 acts only on the

pool’s creation, it still receives its proportional share of rewards for the blocks produced

by the rest of the pool. Therefore, as long as a member believes that the other members

act honestly, it is incentivized to abstain and minimize its cost, thus maximizing its profit.

Naturally, if all parties follow this strategy, the pool produces no blocks and receives no

rewards.

A possible solution to the Free Rider problem above is to penalize a party for misbe-

having. However, identifying misbehavior is not straightforward. For instance, a party 𝒫
who inputs 0 to 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 for a transaction 𝜏 may do so either because the transaction

is invalid or because it didn’t perform validation and input 0 by default. Our approach

is to penalize a party when diverging from the rest of the pool. In the previous exam-

ple, if the output of 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 is 1, then 𝒫 incurs a fixed penalty 𝑃𝑡𝑣. Similarly, if a

party fails to sign a new block then it incurs a (fixed) penalty 𝑃𝑚𝑢. The penalty amount,

which is withheld from 𝒫, is then distributed equally among the other pool members.

To incentivize 𝒫 to follow 𝜋𝑝𝑜𝑜𝑙 the penalties should be high enough; specifically, it

should hold 𝑃𝑡𝑣 > 𝐶𝑡𝑣 and 𝑃𝑚𝑢 > 𝐶𝑚𝑢. If all parties follow 𝜋𝑝𝑜𝑜𝑙, diverting incurs a

2As of January 2021, the Bitcoin chain is roughly 320GB and increases linearly over time. (https:
//www.blockchain.com/charts/blocks-size)

https://www.blockchain.com/charts/blocks-size
https://www.blockchain.com/charts/blocks-size

Chapter 5. Collective Stake Pools 110

cost 𝑃𝑚𝑢 −𝐶𝑚𝑢 > 0 (resp. 𝑃𝑡𝑣 −𝐶𝑡𝑣 > 0), thus the new protocol is an equilibrium.

Finally, penalties can be automatically enforced via an interface to the smart con-

tract Γ𝑟𝑒𝑤𝑎𝑟𝑑 which, given a proof of misbehavior, reduces the misbehaving party’s re-

wards accordingly. For transaction verification, a proof of misbehavior is the transcript

of 𝜋𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠, which describes the consensus sub-protocol’s execution. For block issu-

ing, we can use a threshold signature scheme with identifiable aborts [GG20, CGG+20],

which allows to identify the parties that do not participate in the signing of a block.

Chapter 6

Efficient Global State Management

Distributed ledgers implement a storage layer, on top of which a shared state is main-

tained in a decentralized manner. In ledger systems, this state consists of three objects:

i) the public ledger, i.e., the list of transactions which form the system’s history; ii) the

mempool, i.e., the set of, yet unpublished, transactions; iii) the active state which, in

systems like Bitcoin, consists of the UTxO set. To support thousands (or millions) of

participants, a decentralized system’s state management should be well-designed, pri-

marily focused on minimizing the shared state. Our work focuses on the third type,

as poorly designed management often leads to performance issues and even Denial-of-

Service (DoS) attacks. In Ethereum, during a 2016 DoS attack, an attacker added 18

million accounts to the state, increasing its size by 18 times [Wil16]. Bitcoin saw similar

spam attacks in 2013 [VTM14] and 2015 [Bit15], when millions of outputs were added

to the UTxO set.

Mining nodes and full nodes incur costs for maintaining the shared state in the Bit-

coin network. This cost pertains to the resources (i.e., CPU, disk, network bandwidth,

memory) that are consumed with every transaction transmitted, validated, and stored.

An expensive part of a transaction is the newly created outputs, which are added to

the in-memory UTxO set. As the system’s scale increases, the cost of maintaining the

UTxO set gradually leads to a shared-state bloat, which makes the cost of running a full

node prohibiting.

Moreover, the system’s incentives, which are promoted via transaction fees, only

deteriorate the problem. For example, assume two transactions 𝜏𝐴 and 𝜏𝐵: 𝜏𝐴 spends

5 inputs and creates 1 output, while 𝜏𝐵 spends 1 input and creates 2 outputs. Assuming

the size of a UTxO is equal to the size of consuming it (200 bytes) and that transaction

fees are 30 satoshi per byte, 𝜏𝐴 costs 30×200×(5+1) = 36000 satoshi and 𝜏𝐵 costs

111

Chapter 6. Efficient Global State Management 112

30 × 200 × (1 + 2) = 18000 satoshi. Although 𝜏𝐵 burdens the UTxO set by creating a

net delta of (2 − 1 = 1) new UTxO, while 𝜏𝐴 reduces the shared state by consuming

(1−5 = −4) UTxOs, 𝜏𝐵 is cheaper in terms of fees. Clearly, the existing fee scheme pe-

nalizes the consumption of multiple inputs, disincentivizing minimizing the shared state.

Related Work. The problem of unsustainable growth of the UTxO set has con-

cerned developers for years. It has been discussed in community articles [FvW19, IH19],

some [And15] offering estimations on the level of inefficiency in Bitcoin. Additionally, re-

search papers [PDNHJ18, DPNH17, Nic14, EOB19] have analyzed Bitcoin’s and other

cryptocurrencies’ UTxO sets to gain further insight. Engineering efforts, e.g., in Bit-

coin Core’s newer releases [Max17], have also focused on improving performance by

reducing the UTxO memory requirements. Various solutions have been proposed to

reduce the state of a UTxO ledger, e.g., consolidation of outputs [Wik20] can help

reduce the cost of spending multiple small outputs. Alternatively, Utreexo [Dry19],

uses cryptographic accumulators to reduce the size of the UTxO set in memory, while

BZIP [JLG+19] explores lossless compression of the UTxO set.

An important notion in this line of research is the “stateless blockchain” [Tod16].

Such blockchain enables a node to participate in transaction validation without storing

the entire state of the blockchain, but only a short commitment to it. Chepurnoy et

al. [CPZ18] employ accumulators and vector commitments to build such blockchain.

Concurrently, Boneh et al. [BBF18] introduce batching techniques for accumulators

in order to build a stateless blockchain with a trustless setup which requires constant

amount of storage. We consider an orthogonal problem, i.e., constructing transactions

in an incentive-compatible manner that minimizes the state, so these tools can act as

building blocks in our proposed techniques.

The role of fees in blockchain systems has also been a topic of interest in recent

years. Luu et al. [LTKS15] explored incentives in Ethereum, focusing on incentivizing

miners to correctly verify the validity of scripts run on this “global consensus computer”.

Möser and Böhme [MB15] investigate Bitcoin fees empirically and observe that users’

behavior depends primarily on the client software, rather than a rational cost estimation.

Finally, in an interesting work, Chepurnoy et al. [CKM19] propose a fee structure that

considers the storage, computation, and network requirements; their core idea is to

classify each transaction on one of the three resource types and set its fees accordingly.

Chapter 6. Efficient Global State Management 113

Contributions. Our work investigates techniques that minimize the shared state of

the distributed ledger, i.e., the in-memory UTxO set. Our approach is twofold: a) we

propose transaction optimization techniques which, when employed by wallets, help

reduce the shared state’s cost; b) propose a novel fee scheme that incentivizes “shared

state-friendly” transactions.

In particular, we propose aUTxOmodel, which abstracts UTxO ledgers and enables

evaluating the cost of a ledger’s shared state. We then propose a transaction optimiza-

tion framework, based on three levels of optimization: a) a declarative (rule-based) level,

b) a logical/algebraic (cost-based) level, and c) a physical/algorithmic (cost-based) level.

Following, we propose three transaction optimization techniques based on the afore-

mentioned optimization levels: a) a rule-driven optimal total order of transactions (the

last-payer rule), b) a logical transaction transformation (the 2-for-1 transformation), and

c) a novel input selection algorithm that minimizes the UTxO set increase, i.e., favors

consumption over creation of UTxOs. We then define the transaction optimization

problem and propose a 3-step dynamic programming algorithm to approximate the op-

timal solution. Finally, we define the state efficiency property that a fee function should

have, in order to correctly reflect a transaction’s shared-state cost, and propose a state

efficient fee function for Bitcoin.

6.1 A UTxO Model

We abstract a distributed ledger as a state machine on which parties act. Specifically,

we consider only payments, i.e., value transfers of fungible assets between parties.

Initially, we assume a ledger state 𝒮𝑖𝑛𝑖𝑡, on which a transaction is applied to move the

ledger to a new state. Transactions that may be applied on a state are valid, following

a validation predicate. Each transaction is unique and moves the system to a unique

state; with hindsight, we assume that the ledger never transitions to the same state (cf.

Definition 18), i.e., valid transactions do not form cycles. Figure 6.1 provides intuition

via a simple ledger model.

Our formalism is similar to chimeric ledgers [Zah18], though focused on UTxO-

based ledgers. Following, we provide some basic definitions in a “top-down” approach,

starting with the ledger ℒ, which is an ordered list of transactions; our notation of func-

tions is the one typically used in functional programming languages, for example a func-

tion 𝑓 ∶ 𝐴 → 𝐵 → 𝐶 takes two input parameters of type 𝐴 and 𝐵 respectively and

returns a value of type 𝐶 .

Chapter 6. Efficient Global State Management 114

Figure 6.1: A decentralized state machine model for a distributed ledger.

Definition 14. A ledger ℒ is a list of valid transactions: ℒ def= List[Transaction].

A transaction 𝜏 transitions the system from one state to another. UTxO-based

transactions are thus a product of inputs, which define the ownership of assets, and

outputs, which define the rules of re-transferring the acquired value.

Definition 15. AUTxO-based transaction 𝜏 is : Transaction
def= (inputs ∶ Set[Input],outputs ∶

List[UTxO], forge ∶ Value, fee ∶ Value)

An unspent transaction output (UTxO) represents the ownership of some value from

a party, which is represented via an address 𝛼. Intuitively, in the real world, an output is
akin to owning a physical coin of an arbitrary denomination.

Definition 16. A UTxO is defined as follows: UTxO
def= (𝛼 ∶ Address, value ∶ Value, created ∶

Timestamp).

A transaction’s input is a reference to a UTxO, i.e., an output that is owned by

the party that creates the transaction. An input consists of two objects: i) the id of the

transaction that created it (typically its hash) and ii) an index, which identifies the specific

output among all UTxOs of the referenced transaction.

Definition 17. An input is defined as: Input
def= (id ∶ Hash, index ∶ Int).

Given an input and a ledger, three functions retrieve: i) the corresponding out-

put, ii) the corresponding transaction, and iii) the input value. All returned values are

wrapped in Option, denoting that a value may not be returned.

• UTxO ∶ Input → ℒ → Option[UTxO]

• 𝜏 ∶ Input → ℒ → Option[Transaction]

• value ∶ Input → ℒ → Option[Value]

Chapter 6. Efficient Global State Management 115

A transaction defines some value that is given as a fee to theminer, i.e., the party who

publishes the transaction into the ledger ℒ. We require that all transactions must pre-

serve value as follows: 𝜏.forged+ ∑𝑖∈𝜏.inputs value(𝑖,ℒ) = 𝜏.fee+ ∑𝑜∈𝜏.outputs 𝑜.value.
We note that this applies only on standard transactions, not “coinbase” transactions

which create new coins.

Finally, we define the ledger’s state 𝒮. 𝒮 comprises the UTxO set, i.e., the set of

all outputs of transactions whose value has not been re-transferred and can be used as

inputs to new transactions.

Definition 18. The ledger’s state is defined as: State
def= Set[Input].

We now return to the state machine model. A transaction is applied on a ledger

state 𝒮1 and results in a ledger state 𝒮2 via the function:

txRun ∶ Transaction → LedgerState → LedgerState

An ordered list of transactions 𝕋 = [𝜏1, 𝜏2,…,𝜏𝑁] can be applied sequentially on state

𝒮1 to transit to state 𝒮𝑁 : 𝒮𝑁 = (txRun(𝜏𝑁). … .txRun(𝜏2).txRun(𝜏1))(𝒮1), assuming

the function composition operator (.).

Finally, every ledger state 𝒮 corresponds to some cost 𝐶 . We assume a cost func-

tion, which assigns a signed integer of cost units to a ledger state.

cost ∶ LedgerState → Cost

This function is employed in Definition 19, which defines a transaction’s cost; minimizing

this cost will be the target of our optimization. Observe that the transaction’s cost might

be negative, e.g., if the transaction reduces the state.

Definition 19. The cost of a transaction 𝜏 applied to a state 𝒮 is the difference between

the cost of the final state minus the cost of the initial state:

costTx ∶ Transaction → LedgerState → Cost

costTx(𝜏,𝒮) = 𝑐𝑜𝑠𝑡(txRun(𝜏,𝒮))− cost(𝒮)

The cost of an ordered list of transactions [𝑇] applied to a state 𝒮 is the difference

between the cost of the final state minus the cost of the initial state:

costTotTx ∶ [Transaction] → LedgerState → Cost

costTotTx([𝑇],𝒮) = cost((txRun(𝜏𝑁). … .txRun(𝜏2).txRun(𝜏1))(𝒮1))− cost(𝒮)

Chapter 6. Efficient Global State Management 116

We note that cost represents the size of the ledger’s state. However, our model

is generic enough to accommodate alternative cost designs as well. For instance, cost

could represent the computational effort of producing or verifying the state, such that a

cost unit would be a computational cycle. Therefore, our analysis would also be directly

applicable in that case, by accordingly adapting some parts of the subsequent optimiza-

tion framework like the heuristics.

6.2 Transaction Optimization

The purpose of a distributed ledger is to execute payments, i.e., transfer value from one

party to another via transactions. Multiple transactions can perform the same transfer of

value between two parties. Such transactions are equivalent in terms of their final result,

i.e., transferring some value between parties A and B, but may vary in their cost to the

ledger state. Transaction optimization is the problem of finding the equivalent transaction

with minimum cost; our work is heavily inspired by the seminal research on database

query optimization [Ioa96].

The cost difference between equivalent transactions may be significant. For exam-

ple, assume that Alice wants to give Bob 100 coins and owns a UTxO of 100 coins and

100 UTxOs of 1 coin each. Consider the two equivalent plans: 1) Alice spends the

single UTxO of value 100 and creates 100 outputs of value 1 for Bob; 2) Alice spends

the 100 UTxOs of 1 coin value and defines a single UTxO of value 100 to transfer to

Bob. The cost of the two approaches exemplifies the ledger state impact that equivalent

transactions may have. The first plan increases the ledger’s state by 99 UTxOs, while

the second decreases it by the same amount.

Following, we use the terms plan and transaction interchangeably, i.e., an alternative

plan that achieves the same goal is expressed as an alternative, equivalent transaction.

Definition 20 describes transaction equivalency, while Definition 21 defines equivalency

between two ordered lists of transactions.

Definition 20. Transactions 𝜏1, 𝜏2 are equivalent (denoted 𝜏1 ≡ 𝜏2) if, when applied to

the same state 𝒮𝐴 of a ledger ℒ, they result in states 𝒮1 and 𝒮2 respectively, with the same

total accumulated value per unique address 𝛼:

∀𝛼 ∈ 𝐴 ∑
𝑖∈𝒮1

𝑜𝑖=UTxO(𝑖,ℒ)
𝑜𝑖.address=𝛼

𝑜𝑖.value = ∑
𝑗∈𝒮2

𝑜𝑗=UTxO(𝑗,ℒ)
𝑜𝑗.address=𝛼

𝑜𝑗.value

Chapter 6. Efficient Global State Management 117

where 𝐴 is the set of all addresses of the parties participating in the ledger system.

Definition 21. Two different totally ordered sets of the same 𝑁 transactions [𝑇𝑖] and [𝑇𝑗]
are equivalent (denoted as [𝑇𝑖] ≡ [𝑇𝑗]) if, when applied to the same ledger state 𝒮𝐴 of a

ledger ℒ, they result in states 𝒮1 and 𝒮2 respectively, where the total accumulated value per

unique address 𝛼 is the same in both states:

∀𝛼 ∈ 𝐴 ∑
𝑖∈𝒮1

𝑜𝑖=UTxO(𝑖,ℒ)
𝑜𝑖.address=𝛼

𝑜𝑖.value = ∑
𝑗∈𝒮2

𝑜𝑗=UTxO(𝑗,ℒ)
𝑜𝑗.address=𝛼

𝑜𝑗.value

where 𝐴 is the set of addresses of all participants in the distributed ledger system.

Following, we define the basic logical operators for expressing a transaction and

explore optimization techniques for compiling the optimal transaction plan.

6.2.1 Transaction Logical Operators - Ledger State Algebra

First, we introduce some basic logical operators, i.e., functions used to form a transac-

tion. The operators are regarded as basic logical steps for executing a transaction, i.e.,

irrespective of their particular implementation. However, depending on their imple-

mentation, each step may correspond to different cost. The operators operate on and

produce a state, forming — possibly equivalent (cf. Definition 20) — transactions. The

operators and operands form a ledger state algebra and, as the state is a set of UTxOs

(cf. Definition 18), all common set operators are applicable. In case of failure, they

return the empty state ∅. The three operators are as follows:

• Input Selection: 𝜎(𝑃𝑖𝑑,𝑉) ∶ 𝐿𝑒𝑑𝑔𝑒𝑟𝑆𝑡𝑎𝑡𝑒 → 𝐿𝑒𝑑𝑔𝑒𝑟𝑆𝑡𝑎𝑡𝑒

𝜎(𝑃𝑖𝑑,𝑉) is a unary operator, which is given as input parameter a pair (Party id,

Value). Party id is an abstraction of a set of UTxOs, e.g., it could abstract a wallet

that controls a set of addresses, each owning multiple UTxOs. When applied on

a state 𝒮𝑖, 𝜎(𝑃𝑖𝑑,𝑉) produces a new state 𝒮𝑓 ⊂ 𝒮𝑖, where ∀𝑜 ∈ 𝒮𝑓 ∶ 𝑜 ∈ 𝑃𝑖𝑑 and

∑𝑜∈𝑃𝑖𝑑
𝑜.𝑣𝑎𝑙𝑢𝑒 ≥ 𝑉 . Essentially, 𝜎 is a filter over a state, selecting the UTxOs

with aggregate value larger than, or equal to the input 𝑉 .

• Output Creation 𝜋[(𝑎1,𝑣1),…,(𝑎𝑛,𝑣𝑛)] ∶ 𝐿𝑒𝑑𝑔𝑒𝑟𝑆𝑡𝑎𝑡𝑒 → 𝐿𝑒𝑑𝑔𝑒𝑟𝑆𝑡𝑎𝑡𝑒

𝜋[(𝑎1,𝑣1),…,(𝑎𝑛,𝑣𝑛)] is a unary operator, which is given a set of (Address, Value) pairs

and is applied on a state 𝒮𝑖. It produces a newUTxO set 𝒮𝑓 with 𝒮𝑓 ∩𝒮𝑖 = ∅, i.e.,

Chapter 6. Efficient Global State Management 118

𝒮𝑓 includes only newUTxOs. Also∀𝑜 ∈ 𝒮𝑓 ∶ (𝑜.𝑎𝑑𝑑𝑟𝑒𝑠𝑠,∑𝑜.𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑜.𝑣𝑎𝑙𝑢𝑒) ∈
[(𝑎1,𝑣1),…𝑎𝑛,𝑣𝑛)], i.e., the aggregate output value per address is equal to the

input parameter. We require that value is preserved, i.e., the total value in 𝒮𝑖
is greater than (or equal to) the total value in 𝒮𝑓 ; the value difference is is the

miners’ fee.

• Transaction Validation 𝜏𝑉𝑅,𝒮𝑖
∶ 𝐿𝑒𝑑𝑔𝑒𝑟𝑆𝑡𝑎𝑡𝑒 → 𝐿𝑒𝑑𝑔𝑒𝑟𝑆𝑡𝑎𝑡𝑒 → 𝐿𝑒𝑑𝑔𝑒𝑟𝑆𝑡𝑎𝑡𝑒

𝜏𝑉𝑅,𝒮𝑖
is a binary operator that validates input and output states 𝒮𝐼,𝒮𝑂, against

a set of rules 𝑉𝑅, over an initial state 𝒮𝐺. If validation succeeds, it returns an

updated state 𝒮𝑓 = (𝒮𝐺 −𝒮𝐼)∪𝒮𝑂.

Figure 6.2 depicts the simplest transaction under our algebra, i.e., a tree with a root

and two branches. The root is the transaction validation operator 𝜏 , that receives two
inputs: a) the set of selected inputs (𝜎 on the left branch) and b) the set of outputs

to be created (𝜋 on the right branch). We express this transaction algebraically as:

𝑇 = (𝜎𝐴𝑙𝑖𝑐𝑒,𝑉)⟨𝜏⟩(𝜋𝐵𝑜𝑏,𝑉), ⟨𝜏⟩ being the infix validation operator.

Figure 6.2: The simplest expression of a transaction.

Moving one step further, we assume three transactions 𝜏1, 𝜏2 and 𝜏3. The execu-

tion of these transactions is totally ordered, i.e., 𝜏1 → 𝜏2 → 𝜏3. Figure 6.3 depicts this

expression. Here, 𝜏1 is nested within 𝜏2 and both are nested within 𝜏3. Such tree is

executed from bottom to top, therefore 𝜏2 is given the ledger state generated after 𝜏1
is executed; similarly, 𝜏3 is given the ledger state generated after both 𝜏1 and 𝜏2 are

executed. Given the above, we next define subtransactions; interestingly, transactions

may spend outputs created from their subtransactions, thus we also define the notion

of correlated transactions.

Definition 22. A subtransaction is a transaction nested within a “parent” transaction; it is

executed first, so its impact on the ledger state is visible to the parent.

Chapter 6. Efficient Global State Management 119

Figure 6.3: The expression tree entails a transaction execution total order.

Definition 23. Two transactions 𝜏1, 𝜏2 are correlated, if 𝜏1 is a subtransaction of 𝜏2 and

𝜏2 spends at least one output created by 𝜏1.

6.2.2 A Transaction Optimization Framework

We now identify different phases in the transaction optimization process; in a hypothet-

ical transaction optimizer each phase would be a distinct module. These phases are dif-

ferent approaches to producing equivalent transactions. The phases operate on three

levels of optimization: a) a declarative (rule-based) level, b) a logical/algebraic (cost-

based) level, and c) a physical/algorithmic (cost-based) level, as depicted in Figure 6.4.

The input of the process is a transaction set [𝜏𝑥], that we want to optimize, and while

output is the optimal transaction 𝜏𝑥−𝑂𝑝𝑡𝑖𝑚𝑎𝑙.

Rules. This phase is declarative, as it does not depend on the cost; instead, when

applied, it necessarily produces a better transaction. Essentially it consists of heuristic

rules that are applied by default to produce an equivalent transaction; example of such

rules are “create a single output per address” or “consume as many inputs and create

as few outputs as possible”.

Algebraic Transformations. These are transformations at the level of logical op-

erators that define a transaction’s execution. Generally the efficiency of such transfor-

mation is evaluated based on the entailed cost. Examples of such transformations are

Chapter 6. Efficient Global State Management 120

the 2-for-1 transformation (cf. Definition 24) and different transaction orderings (cf.

Definition 22).

Methods and Structures. This phase optimizes the algorithm that implements a

logical operator. For instance, given two algorithms 𝐴,𝐵 result in transaction costs

𝐶𝐴,𝐶𝐵, if 𝐶𝐴 < 𝐶𝐵 we would choose 𝐴; one such example is the different implemen-

tations of the input selection operator 𝜎, as shown in Figure 6.5. Optimizations in this

phase may also change the data structure used to access the underlying data, which in

our case is the ledger state.

Planning and Searching. This phase employs a searching strategy to explore the

available space of candidate solutions, i.e., equivalent transaction plans. This space con-

sists of the transactions produced from the above phases, each evaluated based on their

cost, under the available cost model.

Figure 6.4: The transaction optimization process.

6.2.3 Transaction Optimization Techniques

In this section, we propose three transaction optimization techniques based on the

aforementioned optimization levels: a) heuristic rule-based, b) logical/algebraic trans-

formation cost-based, and c) physical/algorithmic cost-based.

6.2.3.1 Input Selection Optimization

We demonstrate this technique with an example. Assume Alice wants to give Bob 5
coins. Figure 6.5 depicts three equivalent transactions for implementing this payment.

Chapter 6. Efficient Global State Management 121

Observe that each plan is represented as a tree, where the intermediate nodes are the

previously defined logical operators (that act on a ledger state) and the leaf nodes are

ledger states. We also assume that the state cost is the number of elements (UTxOs) in

the state. The three transactions have the same structure, i.e., they are the same logical

expression, but result to different ledger states with different costs. The transactions

differ only in the output of the input selection operator (𝜎(𝐴𝑙𝑖𝑐𝑒,5)), a difference which

may be attributed to different implementations of the operator.

Figure 6.5: An example of three equivalent transactions that transfer 5 tokens fromAlice

to Bob but incur different state costs.

6.2.3.2 The 2-for-1 Transformation

We again consider the example where Alice wants to give Bob 5 coins. Figure 6.6 de-

picts a fourth, more complex, equivalent transaction. This transaction consists of two

subtransactions (cf. Definition 22), where Alice first gives Bob 17 coins and then receives

12. When the first transaction is completed, an intermediate state (𝑆′
𝑖) is created, which

is then given as input to the second transaction, that produces the final ledger state 𝒮𝑓
of cost 3. Observe that, although more complex, this transaction minimizes the final

ledger state (72% cost reduction). Intuitively, this transaction spends all of Alice’s out-

puts with the first sub-transaction and then does the same for Bob with the second

sub-transaction. Therefore, the optimal cost does not depend on input selection (like

the 3rd plan of Figure 6.5), but requires the combination of two transactions that imple-

ment a single payment, under a specific amount (12). Definition 24 provides a formal

Chapter 6. Efficient Global State Management 122

specification of the 2-for-1 logical (algebraic) transformation.

Figure 6.6: A 2-for-1 transaction that transfers 5 tokens from Alice to Bob.

Definition 24. Given a transaction 𝜏1, which transfers an amount 𝑉 from party A to B, the

algebraic 2-for-1 transformation creates an equivalent transaction 𝜏2, which consists of (a) a

subtransaction, which transfers 𝑉 +𝑉𝑐 from party A to B and (b) an outer transaction, which

transfers 𝑉𝑐 from party B to A.

Figure 6.7 depicts the 2-for-1 algebraic transformation based on an amount 𝑉𝑐. To

implement such a scheme we require an atomic operation, where the grouped transac-

tions are executed simultaneously. One method to implement the atomic transfers is

CoinJoin [Max13b], which was proposed for increasing the privacy in Bitcoin; in Coin-

Join, the transaction is constructed and signed gradually by each party that contributes its

inputs. A similar concept is Algorand’s atomic transfers [Fus19], that achieves atomicity

by grouping transactions under a common id.

Intuitively, 2-for-1 reduces the transaction’s cost by also consuming UTxOs of the

receiving party, instead of only consuming outputs of the sending party. Specifically, as-

sume the initial state 𝒮𝑖 = {|𝐴|, |𝐵|}, where |𝐴| denotes the number of outputs owned

by party A. When issuing a payment to B, party A can consume all outputs and con-

solidate its remaining value to a single UTxO, the “change” output. Such transaction

Chapter 6. Efficient Global State Management 123

Figure 6.7: The 2-for-1 algebraic transformation.

results in state 𝒮𝑓 = {1, |𝐵|+1} with cost 𝑐𝑜𝑠𝑡(𝒮𝑓) = |𝐵|+2. If we apply the 2-for-1
transformation, the final state is 𝒮′

𝑓 = {1+1,1} with a cost of 𝑐𝑜𝑠𝑡(𝒮′
𝑓) = 3; if |𝐵| > 1,

then 𝑐𝑜𝑠𝑡(𝒮′
𝑓) < 𝑐𝑜𝑠𝑡(𝒮𝑓). Therefore, if the receiving party has multiple outputs, this

transformation creates a transaction with a smaller cost. Consequently, by giving the

opportunity to the receiving party of a transaction to spend also its outputs, the 2-for-1

transformation always results in a greater shared state cost reduction than the individ-

ual un-transformed transaction in the case where there are no fee constraints and thus

outputs can be spent freely; otherwise it is a cost-based decision.

6.2.3.3 Transaction Total Ordering and the Last-Payer Heuristic Rule

Assume the following four transactions: (1) 𝑇1: Alice
𝑉1−→Charlie, (2) 𝑇2: Bob

𝑉2−→Char-

lie, (3) 𝑇3: Eve
𝑉3−→ Alice, and (4) 𝑇4: Eve

𝑉4−→ Bob, which are applied on an initial ledger

state 𝒮𝑖 = {|𝐴𝑙𝑖𝑐𝑒| = 5, |𝐵𝑜𝑏| = 5, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 2, |𝐸𝑣𝑒| = 3} with cost 𝑐𝑜𝑠𝑡(𝒮𝑖) = 15;
as before, |𝐴| denotes the number of outputs owned by party A and the state cost is

the number of all UTxOs.

A first execution order is as follows: 𝑇1 → 𝑇2 → 𝑇3 → 𝑇4. For simplicity and with-

out loss of the generality, we assume that when a party pays, it always consumes all

available outputs, thus having with a single output afterwards (the leftover balance).

Similarly, when a party gets paid, the number of UTxOs that it owns increases by one.

Next, we describe the ledger state changes each transaction is executed:

𝒮𝑖 = {|𝐴𝑙𝑖𝑐𝑒| = 5, |𝐵𝑜𝑏| = 5, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 2, |𝐸𝑣𝑒| = 3},𝑐𝑜𝑠𝑡 = 15
𝑇1 ∶ {|𝐴𝑙𝑖𝑐𝑒| = 1, |𝐵𝑜𝑏| = 5, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 3, |𝐸𝑣𝑒| = 3},𝑐𝑜𝑠𝑡 = 12
𝑇2 ∶ {|𝐴𝑙𝑖𝑐𝑒| = 1, |𝐵𝑜𝑏| = 1, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 4, |𝐸𝑣𝑒| = 3},𝑐𝑜𝑠𝑡 = 8

Chapter 6. Efficient Global State Management 124

𝑇3 ∶ {|𝐴𝑙𝑖𝑐𝑒| = 2, |𝐵𝑜𝑏| = 1, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 4, |𝐸𝑣𝑒| = 1},𝑐𝑜𝑠𝑡 = 8
𝑇4 ∶ {|𝐴𝑙𝑖𝑐𝑒| = 2, |𝐵𝑜𝑏| = 2, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 4, |𝐸𝑣𝑒| = 1},𝑐𝑜𝑠𝑡 = 9

Assuming a different order, 𝑇3 → 𝑇4 → 𝑇1 → 𝑇2, the state changes as follows:

𝒮𝑖 = {|𝐴𝑙𝑖𝑐𝑒| = 5, |𝐵𝑜𝑏| = 5, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 2, |𝐸𝑣𝑒| = 3},𝑐𝑜𝑠𝑡 = 15
𝑇3 ∶ {|𝐴𝑙𝑖𝑐𝑒| = 6, |𝐵𝑜𝑏| = 5, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 2, |𝐸𝑣𝑒| = 1},𝑐𝑜𝑠𝑡 = 14
𝑇4 ∶ {|𝐴𝑙𝑖𝑐𝑒| = 6, |𝐵𝑜𝑏| = 6, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 2, |𝐸𝑣𝑒| = 1},𝑐𝑜𝑠𝑡 = 15
𝑇1 ∶ {|𝐴𝑙𝑖𝑐𝑒| = 1, |𝐵𝑜𝑏| = 6, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 3, |𝐸𝑣𝑒| = 1},𝑐𝑜𝑠𝑡 = 11
𝑇2 ∶ {|𝐴𝑙𝑖𝑐𝑒| = 1, |𝐵𝑜𝑏| = 1, |𝐶ℎ𝑎𝑟𝑙𝑖𝑒| = 4, |𝐸𝑣𝑒| = 1},𝑐𝑜𝑠𝑡 = 7

Evidently, the different execution order results in different resulting state cost. There-

fore, by changing the nesting order of the transactions in an expression tree, different

plans may conduct the same payment with different cost.

Intuitively, parties should have the ability to consume outputs that are produced by

the other transactions. For instance, regarding 𝑇1 and 𝑇3, the order 𝑇3 → 𝑇1 is more

cost effective (𝑐𝑜𝑠𝑡 = 10) than 𝑇1 → 𝑇3 (𝑐𝑜𝑠𝑡 = 11), since Alice can consume the output

created by Eve. Specifically, if in the last transaction where 𝒫 participates, either as a

sender or a receiver, 𝒫 is the sender, then it can minimize its state cost; we call this the

last-payer heuristic rule.

6.2.4 The Transaction Optimization Problem

Using the above ideas, we now formally define the transaction optimization problem

as a typical optimization problem, assuming a set of available input selection algorithms

{𝑆𝑒𝑙1,𝑆𝑒𝑙2,…,𝑆𝑒𝑙𝑙}.

Definition 25. Given𝑁 payments between𝑀 parties𝒫1,𝒫2,…,𝒫𝑀 and a search space

𝒮 of equivalent (cf. Definition 21), ordered lists of transaction plans that execute the 𝑁 pay-

ments, called candidate solutions, find the candidate 𝜏 ∈ 𝒮, such that 𝑒𝑣𝑎𝑙(𝜏) ≤ 𝑒𝑣𝑎𝑙(𝜌),
for all 𝜌 ∈ 𝒮. Specifically:

1. A candidate 𝜌 ∈ 𝒮 is an ordered list of transaction plans1 ||𝑇1|| → ||𝑇2|| → ⋯ →
||𝑇𝑘||, where the transaction plan of a transaction 𝑇𝑥 is the pair: ||𝑇𝑥|| def= (Logical

Expression, Input Selection Algorithm).

1We assume that transactions are non-correlated (cf. Definition 23) and that all orderings are equiv-
alent (cf. Definition 21).

Chapter 6. Efficient Global State Management 125

2. The search space 𝒮 is defined by all candidates ||𝑇1|| → ||𝑇2|| → ⋯ → ||𝑇𝑘||, where,
for each transaction 𝑇𝑖, an input selection algorithm from {𝑆𝑒𝑙1,𝑆𝑒𝑙2,…,𝑆𝑒𝑙𝑙} is

chosen and, possibly, the 2-for-1 logical transformation (cf. Definition 24) is applied.

3. 𝑒𝑣𝑎𝑙 evaluates the cost of every candidate 𝜌 ∈ 𝒮 (cf. Definition 19) as follows:

𝑒𝑣𝑎𝑙 ∶ [𝑇 𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛] → 𝐿𝑒𝑑𝑔𝑒𝑟𝑆𝑡𝑎𝑡𝑒 → 𝐶𝑜𝑠𝑡,
𝑒𝑣𝑎𝑙([𝑇1,𝑇2,…,𝑇𝑘],𝒮𝑖𝑛𝑖𝑡) =

𝑐𝑜𝑠𝑡((𝑡𝑥𝑅𝑢𝑛(𝑇𝑘). … .𝑡𝑥𝑅𝑢𝑛(𝑇2).𝑡𝑥𝑅𝑢𝑛(𝑇1))(𝒮𝑖𝑛𝑖𝑡))−𝑐𝑜𝑠𝑡(𝒮𝑖𝑛𝑖𝑡)

where 𝑐𝑜𝑠𝑡(𝑆) = |𝑆| is the size of a ledger state (cf. Definition 18) and the functions

(𝑡𝑥𝑅𝑢𝑛(𝑇𝑘). … .𝑡𝑥𝑅𝑢𝑛(𝑇2).𝑡𝑥𝑅𝑢𝑛(𝑇1))(𝒮𝑖𝑛𝑖𝑡) output the final state after the

list of ordered transactions is executed on the initial state 𝒮𝑖𝑛𝑖𝑡, according to each

individual transaction plan ||𝑇𝑖||.

Solving the Transaction Optimization Problem. We now present a 3-step,

dynamic programming algorithm, which solves the transaction optimization problem via

an exhaustive search and dynamically pruning candidate solutions:

1. Create 𝑁 transactions 𝑇𝑖𝑗, 𝑖, 𝑗 ∈ [1,𝑀], corresponding to the payments (𝒫𝑖
𝑉𝑖𝑗
−−→

𝒫𝑗), as follows:

𝑇𝑖𝑗 = (𝜎𝒫𝑖,𝑉𝑖𝑗
(𝒮𝑖𝑛𝑖𝑡))⟨𝜏⟩(𝜋𝒫𝑗,𝑉 𝑖𝑗(𝒮𝑖𝑛𝑖𝑡))

where 𝑉𝑖𝑗 is the amount to be paid from 𝒫𝑖 to 𝒫𝑗. For each 𝑇𝑖𝑗, find the input se-

lection algorithm in {𝑆𝑒𝑙1,𝑆𝑒𝑙2,…,𝑆𝑒𝑙𝑙} that minimizes 𝑒𝑣𝑎𝑙(𝑇𝑖𝑗,𝒮𝑖𝑛𝑖𝑡). Then,
enforce the heuristic rule to create a single output per recipient address for each

transaction. At the end of this step, the algorithm outputs 𝑁 transaction plans,

i.e., 𝑁 pairs of transaction’s 𝑇𝑖𝑗 logical expression and the chosen input selection

algorithm:

||𝑇𝑖𝑗|| = ((𝜎𝒫𝑖,𝑉𝑖𝑗
(𝒮𝑖𝑛𝑖𝑡))⟨𝜏⟩(𝜋𝒫𝑗,𝑉 𝑖𝑗(𝒮𝑖𝑛𝑖𝑡)), 𝑆𝑒𝑙𝑠)

2. On each transaction plan output of Step 1, perform a 2-for-1 transformation (cf.

Definition 24). This step produces a transformed transaction as depicted in Fig-

ure 6.8, based on an amount 𝑝×𝑉𝑖𝑗, where 𝑝 is a configuration parameter of the

algorithm, typically in the range 0 < 𝑝 ≤ 1. Then, for each of the two transactions

Chapter 6. Efficient Global State Management 126

that comprise the 2-for-1 transformation, choose the input selection algorithm

that minimizes the 𝑒𝑣𝑎𝑙 function and enforce the heuristic rule of a single output

per recipient address. Finally, accept the 2-for-1 transformed transaction only if

its cost (given by 𝑒𝑣𝑎𝑙) is smaller than the non-transformed transaction.

Figure 6.8: Applying the 2-for-1 transformation to each separate transaction.

At the end of this step, the algorithm outputs 𝑘 transaction plans, 𝑘 ≥ 𝑁 , com-

prising of the 2-for-1 transformed and the non-transformed transactions, along

with their input selection algorithms. Importantly, at this point, the algorithm has

an optimal plan for each individual payment (𝒫𝑖
𝑉𝑖𝑗
−−→ 𝒫𝑗), based on an exhaustive

search of solutions and cost-driven choices.

3. In this step, the algorithm finds the optimal total order to execute the 𝑘 transac-

tions produced on Step 2. Since there exist 𝑘! permutations, the search space

is pruned using the Last-Payer heuristic rule (cf. Section 6.2.3). At the end of this

step, the algorithm outputs a totally ordered set of transaction plans that solve

the optimization problem, i.e., executes the 𝑁 payments with a minimum state

ledger cost.

Our algorithm’s asymptotic time complexity depends on its slowest element. For sim-

plicity, we assume that applying a transaction on a ledger state requires constant time.

Therefore, in Step 1, creating each of the 𝑁 transactions is 𝑂(1). However, each of the
𝑙 input selection algorithms may have different complexity when parsing the 𝑛 UTxO

inputs. For example, [KKK21a] shows that to minimize “change”, i.e., to find inputs that

exactly match the payment’s output, requires solving a Knapsack problem, i.e., 𝑂(2𝑛),
but is not necessarily state efficient; instead, the paper proposes an input selection algo-

rithm with complexity 𝑂(𝑛 log𝑛). Step 2 has the same asymptotic complexity as Step

Chapter 6. Efficient Global State Management 127

1, as performing the 2-for-1 transformation requires 𝑂(1), as does the application of

heuristics, while choosing an input selection algorithm is the same as in Step 1. Finally,

Step 3 requires 𝑂(𝑁!), in the corner case when the heuristics do not prune the search

space at all.

On thewhole, assuming the complexity of the least efficient input selection algorithm

is 𝑂(𝜆(𝑛), our algorithms complexity is 𝑂(𝜆(𝑛)+𝑁!), where 𝑛 are the available inputs

and 𝑁 is the number of payments. Theoretically speaking, this is a rather inefficient so-

lution. In practice though, the wallets of regular users do not control many UTxOs, so

𝑛 is expectedly low. The same holds for 𝑁 , as regular users are not expected to per-

form complex payments towards multiple third parties. Nonetheless, optimizing the

employed modules, e.g., designing more efficient input selection algorithms and heuris-

tics, offers an interesting path for future research.

Regarding optimality, the transaction plans produced in Step 2 are optimal w.r.t.

executing the individual transactions, since the algorithm performs an exhaustive search

for the minimum-cost solution. In Step 3, the algorithm is based on a heuristic rule

(Last-Payer) to search for the optimal total order in a pruned (and thus manageable)

space. Future work will evaluate the efficiency of this heuristic rule, i.e., how well it

approximates the optimal solution, and explore further rules for achieving optimality.

6.3 State Efficiency in Bitcoin

We now define the state efficiency property. Our goal is to incentivize users to minimize

the global state, without impacting the system’s functionality. In that case, if all users are

rational, i.e., operate following the incentives, then the state will be minimized as much

as possible. Future work will explore the actual impact of deploying such incentives in

real-world systems.

To achieve state efficiency, a transaction’s fee should be proportional to the incurred

state cost. In other words, themore a transaction increases the ledger’s state, the higher

its fees should be. Specifically, a transaction’s fee should reflect: i) the transaction’s size,

i.e., the cost of storing a transaction permanently on the ledger and ii) the transaction’s

state cost. A distributed ledger’s fee model should aim at incentivizing users to minimiz-

ing both storage types, i.e., the distributed ledger and the global state.

First, we define the fee function 𝐹 , i.e., the function that assigns an (integer) fee

on a transaction, given a ledger state: 𝐹 ∶ Transaction → LedgerState → Int. Follow-

ing, Definition 26 describes state efficiency. This property instructs the fee function to

Chapter 6. Efficient Global State Management 128

(monotonically) increase fees, if a transaction increases the state. Intuitively, between

two equivalent transactions, the transaction that incurs greater state cost should also

incur a larger fee.

Definition 26. A fee function 𝐹 is state efficient if

∀𝒮 ∈ 𝕊∀𝜏1, 𝜏2 ∈ 𝕋 ∣ 𝜏1 ≡ 𝜏2 ∧ costTx(𝜏1,𝒮) > costTx(𝜏2,𝒮) ∶ 𝐹 (𝜏1,𝒮) > 𝐹(𝜏2,𝒮)

for transaction cost function (cf. Definition 19) and equivalence (cf. Definition 20).

Evidently, if the utility of users is to minimize transaction fees, a state efficient fee

function ensures that they are also incentivized to minimize the global state. Finally,

Definition 27 sets narrow state efficiency, a special case of state efficiency which compares

equivalent transactions that differ only in their inputs.

Definition 27. A fee function 𝐹 is narrow state efficient if

∀𝒮 ∈ 𝕊∀𝜏1, 𝜏2 ∈ 𝕋 ∣
𝜏1 ≡ 𝜏2 ∧𝜏1.outputs = 𝜏2.outputs∧ costTx(𝜏1,𝒮) > costTx(𝜏2,𝒮) ∶

𝐹 (𝜏1,𝒮) > 𝐹(𝜏2,𝒮)

for transaction cost function (cf. Definition 19) and equivalence (cf. Definition 20).

Bitcoin’s State Management. Bitcoin’s consensus model does not consider fees.

Specifically, the user decides a transaction’s fees and the miners choose whether to

include a transaction in a block. Therefore, it has been stipulated that the level of fees is

the balance between the rational choices of miners, who supply the market with block

space, and users, who demand part of said space [Bit20a].

In practice, users follow the client software’s choice even when not needed [MB15],

e.g., when blocks are not full. Similarly, miners usually follow the hard-coded software

rules and may accept even zero-fee transactions. The reference rules of the Bitcoin

Wiki [Bit20a] define the fee rate 𝑥, which is the fraction of fees per transaction size,

Miners sort transactions based on this metric and solve the Knapsack problem to fill a

new block with transactions that maximize it. Some notable alternatives also focus on

fee rate [DCKT19, Riz15], while reference rules [Bit20a] used to also take into account

the UTxO age.

As before, a transaction consists of inputs and outputs, i.e., old UTxOs which are

spent and newly-created UTxOs. Inputs and UTxOs have a fixed size 𝜄 and 𝜔 respec-

Chapter 6. Efficient Global State Management 129

tively.2 The size of a transaction is the sum of its inputs and outputs, i.e., is a linear

combination of 𝜄 and 𝜔, while a transaction’s cost is the difference between the number

of its UTxOs minus its inputs. Bitcoin’s fee function is 𝐹 = 𝛽 ⋅ size(𝜏), where size(𝜏) is
𝜏 ’s size in bytes and 𝛽 is a fixed fee per byte.3

We break the fee efficiency of 𝐹 via a counterexample. Assume two transactions

which are applied on the same ledger state 𝒮; for ease of notation, in the rest of the

section 𝐹(𝜏) denotes 𝐹(𝜏,𝒮). First, 𝜏1 has 1 input and 1 output, so its state cost is

costTx(𝜏1,𝒮) = 0 and its fee is 𝐹(𝜏1) = 𝛽 ⋅ (𝜄 + 𝜔). Second, 𝜏2 has 2 inputs and 1
output, i.e., its state cost is costTx(𝜏2,𝒮) = −1, since it decreases the state; however,

its fee is𝐹(𝜏2) = 𝛽 ⋅(2⋅𝜄+𝜔) = 𝐹(𝜏1)+𝛽 ⋅𝜄. Thus, although costTx(𝜏1) > costTx(𝜏2),
𝜏2’s fee is higher, since it is larger.

A better alternative fee function is the following: 𝐹 ′ = 𝛽 ⋅ size(𝜏)+𝜓⋅costTx(𝜏,𝒮).
Note that this is state-efficient in our model for a sufficiently small value of 𝛽 (cf. Sec-

tion 6.3.1). Observe with this function, when increasing the UTxO set, a user needs to

pay an extra fee𝜓 per UTxO. Given this change, the reference rules are updated so that,

instead of the fee rate, miners use the scoring function: score(𝜏) = fees(𝜏)−𝜓⋅costTx(𝜏,𝒮)
size(𝜏) ,

where fees(𝜏) are 𝜏 ’s total fees. In market prices, 1 byte of RAM costs approximately

$3.35 ⋅ 10−9 [McC20]. The average size of a Bitcoin UTxO is 61 Bytes [DPNH19],

so a single Bitcoin UTxO costs 𝜓 = 61 ⋅ 3.35 ⋅ 10−9 = $2 ⋅ 10−7. Given 10000 full

nodes4, which maintain the ledger and keep the UTxO in memory, the cost becomes

𝜓 = $0.002; equivalently, denominated in Bitcoin5, the cost of creating a UTxO is𝜓 = 22
satoshi.

This solution incorporates the operational costs of miners, thus it is the rational

choice for miners who aim at maximizing their profit. Observe that, after subtracting

the fees that relate to UTxO costs, the scoring mechanism behaves the same as the one

currently used by Bitcoin miners. Therefore, if users wish to prioritize their transactions,

they would again simply increase their transaction’s fees; in that case, the UTxO portion

of the fees (i.e., 𝜓 ⋅ costTx(𝜏,𝒮)) remains the same, hence higher fees result in a higher
score, similar to the existing mechanism. Also we note that this mechanism is directly

enforceable on Bitcoin without the need of a fork.
2This assumption slightly diverges from the real-world, where UTxOs are typically of varying size

depending on the operations in the ScriptPubKey.
3𝛽 = 0.0067$/byte [September 2020] (https://bitinfocharts.com)
4https://bitnodes.io [July 2020]
51𝐵𝑇 𝐶 = $9000 [https://coinmarketcap.com; July 2020]

https://bitinfocharts.com
https://bitnodes.io
https://coinmarketcap.com

Chapter 6. Efficient Global State Management 130

6.3.1 A State Efficient Bitcoin

Intuitively, to make 𝐹 state efficient we force the creator of a UTxO to subsidize its

consumption, i.e., to pay the user who later consumes it. Our fee function is again:

𝐹 ′ = 𝛽 ⋅ size(𝜏) + 𝜓 ⋅ costTx(𝜏,𝒮). Assume two transactions 𝜏1, 𝜏2 with 𝑖1, 𝑖2 inputs

and 𝑜1,𝑜2 outputs respectively:

costTx(𝜏1) > costTx(𝜏2) ⇔ 𝑜1 −𝑖1 > 𝑜2 −𝑖2 ⇔ 𝑜2 −𝑜1 < 𝑖2 −𝑖1 (6.1)

𝐹 ′ is state efficient (cf. Definition 26) if:

𝐹 ′(𝜏1) > 𝐹 ′(𝜏2) ⇒
size(𝜏1) ⋅ 𝛽 + costTx(𝜏1) ⋅𝜓 > size(𝜏2) ⋅ 𝛽 + costTx(𝜏2) ⋅𝜓 ⇒

(𝑖1 ⋅ 𝜄+𝑜1 ⋅ 𝜔) ⋅ 𝛽 +(𝑜1 −𝑖1) ⋅𝜓 > (𝑖2 ⋅ 𝜄+𝑜2 ⋅ 𝜔) ⋅ 𝛽 +(𝑜2 −𝑖2) ⋅𝜓 ⇒
(𝑜1 −𝑖1) ⋅𝜓 −(𝑜2 −𝑖2) ⋅𝜓 > (𝑖2 ⋅ 𝜄+𝑜2 ⋅ 𝜔) ⋅ 𝛽 −(𝑖1 ⋅ 𝜄+𝑜1 ⋅ 𝜔) ⋅ 𝛽 ⇒

(𝑖2 −𝑖1 +𝑜1 −𝑜2) ⋅𝜓 > ((𝑖2 −𝑖1) ⋅ 𝜄+(𝑜2 −𝑜1) ⋅𝜔) ⋅ 𝛽
(6.1)
==⇒

𝜓 > (𝑖2 −𝑖1) ⋅ 𝜄+(𝑜2 −𝑜1) ⋅𝜔
(𝑖2 −𝑖1)−(𝑜2 −𝑜1) ⋅ 𝛽 (6.2)

If 𝐹 ′ is narrow state efficient, then 𝑜1 = 𝑜2 and the inequality is simplified:

𝜓 > 𝜄 ⋅𝛽 (6.3)

We turn again to the previous example. For transaction 𝜏1, with 1 input and 1
output, 𝐹 ′(𝜏1) = (𝜄+𝜔)⋅𝛽 and for transaction 𝜏2, with 2 inputs and 1 output, 𝐹 ′(𝜏2) =
(2⋅𝜄+𝜔)⋅𝛽−𝜓 = 𝐹 ′(𝜏1)+𝛽 ⋅𝜄−𝜓. Since Inequalities 6.2 and 6.3 ensure that𝜓 > 𝜄⋅𝛽,
the size fee of the extra input in 𝜏2 is offset by the extra fee 𝜓, which is paid by the user

who creates it. Again to evaluate these variables we consider market prices. The size

of a typical, pay-to-script-hash or pay-to-public-key-hash, UTxO is 34 Bytes [Bit20b],

while the size of consuming it is 146 bytes. Therefore, to make and make present-day

Bitcoin (narrow) state efficient, we can set 𝜔 = 34, 𝜄 = 146, 𝛽 = 0.0067$, and thus

𝜓 > 0.0978$.
However, this approach presents a number of challenges. To enforce 𝐹 ′, the fee

policy should be incorporated in the consensus protocol and a transaction’s validity

will depend on its amount of fees. As long as 𝐹 ′(𝜏) > 0, i.e., a transaction cannot

have negative fees, the fee function can be enforced via a soft fork. Specifically, this

change is backwards compatible, as miners that do not adopt this change will still accept

transactions that follow the new fee scheme. However, if costTx(𝜏) ≪ 0 and possibly

Chapter 6. Efficient Global State Management 131

𝐹 ′(𝜏) < 0, to implement 𝐹 ′ we need to establish a “pot” of fees. When a user creates

𝜏 with fee 𝐹 ′ = 𝛽 ⋅ size(𝜏) + 𝜓 ⋅ costTx(𝜏,𝒮), the first part (𝛽 ⋅ size(𝜏)) is awarded to

the miners as before. The second part (𝜓 ⋅ costTx(𝜏,𝒮)) is deposited to (or, in case of

negative cost, withdrawn from) the pot. In case of negative cost, the transaction defines

a special UTxO for receiving the reimbursement. At any point in time, the size of the

pot is directly proportional to the UTxO set. Observe that the miners receive the same

rewards as before, so their business model is not affected by this change. Finally, the

cost of flooding the system with UTxOs increases by 𝜓 per UTxO which, depending on

𝜓, can render attacks ineffective.

Chapter 7

Blockchain Nash Dynamics

With the advent of Bitcoin [Nak08a] the economic aspects of consensus protocols

came to the forefront. While classical literature in consensus primarily dealt with “error

models”, such as fail-stop or Byzantine [PSL80b], the pressing question post-Bitcoin is

whether the incentives of the participants align with what the consensus protocol asks

them to do.

Motivated by this, existing literature pursued various research paths. One line of

work investigated whether the Bitcoin protocol is an equilibrium under certain condi-

tions [KDF13, KKKT16b]. Another, pinpointed protocol deviations that can be more

profitable for some players, assuming others follow the protocol [ES14, SSZ16, JLG+14,

CKWN16]. Someworks proposed tweaks towards improving the underlying blockchain

protocol in various settings [FKO+19, KLOS19], game-theoretic studies of pooling be-

havior [LBS+15, CKWN16, AW19], as well as equilibria involving abstaining from the

protocol [FKKP19] in high cost scenaria. Going beyond consensus, economic mech-

anisms have also been considered in the context of multi-party computation [KMB15,

DDL19, DDL18], to disincentivize “cheating”. Finally, a large body of research was

dedicated to optimizing particular attacks; respresentative works i) identify optimal self-

ish mining strategies [SSZ16]; ii) propose a framework [GKW+16] for quantitatively

evaluating blockchain parameters and identifies optimal strategies for selfish mining and

double-spending, taking into account network delays; iii) propose alternative strate-

gies [NKMS15], that are more profitable than selfish mining.

Though the above works provide some glimpses on how Bitcoin and related pro-

tocols behave from a game-theoretic perspective, they still offer very little guidance on

how to design new consensus protocols. This is a problem of high importance, given

the current negative light shed on Bitcoin’s perceived energy inefficiency and carbon

132

Chapter 7. Blockchain Nash Dynamics 133

footprint [MN21] that asks for alternative protocols. Proof-of-Stake (PoS) ledgers is

currently the most prominent alternative to Bitcoin’s Proof-of-Work (PoW) mecha-

nism. While PoW requires computational effort to produce valid messages, i.e., blocks

which are acceptable by the protocol, PoS relies on each party’s stake, i.e., the assets

they own, and each block is created at (virtually) no cost. Interestingly, while it is proven

that PoS protocols are Byzantine resilient [KRDO17, CGMV18, GHM+17b, BG17] and

are even equilibriums under certain conditions [KRDO17], their security is heavily con-

tested by proponents of PoW protocols via an economic argument. In particular, the

argument termed the nothing-at-stake attack [LABK17, Eth18b, Mar] asserts that parties

who maintain a PoS ledger will opt to produce conflicting blocks, whenever possible, to

maximize their expected rewards.

What merit do these criticisms have? Participating in a blockchain protocol is a

voluntary action that involves a participant downloading the software, committing some

resources, and running the software. Furthermore, especially given the open source na-

ture of these protocols, nothing prevents the participant from modifying the behaviour

of the software in some way and engage with the other parties following a modified

strategy. There are a number of adjustments that a participant can do which are unde-

sirable, e.g., i) run the protocol intermittently instead of continuously; ii) not extend the

most recent ledger of transactions they are aware of; iii) extend simultaneously more

than one ledger of transactions. One can consider the above as fundamental infractions

to the protocol rules and they may have serious security implications, both in terms of

the consistency and the liveness of the underlying ledger.

To address these issues, many blockchain systems introduce additional mechanisms

on top of Bitcoin incentives, frequently with only rudimentary game theoretic analysis.

These include: i) rewards for “uncle blocks” in Ethereum; ii) stake delegation [Com18]

in Eos and Polkadot, where users assign their participation rights to delegates, as well

as stake pools in Cardano [KKL20]; iii) penalties [BG17, BRLP19] for misbehavior in

Ethereum 2.0, that enforce forfeiture of large deposits (referred to as “slashing”) if a

party misbehaves, in the sense of being offline or using their cryptographic keys im-

properly. The lack of thorough analysis of these mechanisms is of course a serious

impediment to the wider adoption of these systems.

For instance, forfeiting funds may happen inadvertently, due to server misconfig-

uration or software and hardware bugs [Kha21]. A party that employs a redundant

configuration with multiple replicas, to increase its crash-fault tolerance, may produce

conflicting blocks if, due to a faulty configuration or failover mechanism, two replicas

Chapter 7. Blockchain Nash Dynamics 134

come alive simultaneously. Similarly, if a party employs no failover mechanism and ex-

periences network connectivity issues, it may fail to participate. Finally, software or

hardware bugs can always compromise an – otherwise safe and secure – configuration.

This highlights the flip side of such penalty mechanisms: participants may choose to not

engage, (e.g., to avoid the risk of forfeiting funds, or because they do not own sufficient

funds to make a deposit), or, if they do engage, they may steer clear of fault-tolerant

sysadmin practices, such as employing a failover replica, which could pose quality of

service concerns and hurt the system in the long run.

The above considerations put forth the fundamental question that motivates our

work: How effective are blockchain protocol designs in disincentivizing particular infractions?

In more detail, the question we ask is whether selfish behavior can lead to deviations,

starting with a given blockchain protocol as the initial point of reference of honest —

compliant — behavior.

Contributions

Our main question relates to the Nash-dynamics of blockchain protocols. In the classi-

cal Nash-dynamics problem [Ros73], the question is whether selfish players performing

step-wise payoff improving moves lead the system to an equilibrium, and in how many

steps this may happen; e.g., [FPT04] provides an important case of congestion games.

In this perspective, the action space can be seen as a directed graph, with vertices rep-

resenting vectors of player strategies and edges corresponding to player moves.

In this work, we adapt Nash dynamics to the setting of blockchain protocols, with

a particular focus on the study of specific undesirable protocol infractions. Importantly,

instead of asking for convergence, we ask whether the “cone” in the directed graph

positioned at the protocol contains any strategies that belong to a given set of infractions

𝒳 (cf. Figure 7.1). If the cone is free of infractions, then the protocol is said to be 𝒳-

compliant. Motivated by Chien and Sinclair [CS11], we consider 𝜖-Nash-dynamics, i.e.,

considering only steps in the graph that improve the participant payoff more than 𝜖.
Armed with this model, we investigate a number of protocols, both in the PoW and

PoS setting, from a compliance perspective. Notably, we provide indicative values for 𝜖,
beyond which a protocol is not compliant. Nonetheless, our work is complimentary to

research that investigates optimality of particular attacks; specifically, these works could

be used in conjunction with our model to provide tighter, if not optimal, bounds on 𝜖.
First, Section 7.2 describes our model of compliant strategies and protocols. A strat-

Chapter 7. Blockchain Nash Dynamics 135

Figure 7.1: Illustration of a compliant protocol that does not exhibit an equilibrium (i),

vs a protocol which is an approximate Nash equilibrium (ii).

egy is compliant if a party that employs it never violates a predicate 𝒳, which captures

well-defined types of deviant behavior. Accordingly, a protocol is compliant if, assuming

a starting point where no party deviates, no party will eventually employ a non-compliant

strategy, assuming sequential unilateral defections. Section 7.3 specifies compliance for

blockchain protocols, under an infraction predicate that captures abstaining and produc-

ing conflicting blocks, and two types of utility, absolute rewards and profit. Following, we

explore different reward schemes and families of protocols. First, Section 7.4 shows that

fair rewards, i.e., which depend only on a party’s mining or staking power, result in com-

pliance w.r.t. rewards alone (i.e., when costs are negligible), but non-compliance w.r.t.

profit (rewards minus costs). Next, we explore block-proportional rewards, i.e., which

depend on the blocks adopted by an impartial observer of the system. Section 7.5.1

shows that PoW systems are compliant w.r.t. rewards. Section 7.5.2.1 shows that

PoS systems, which enforce that a single party participates at a time, are compliant, un-

der a synchronous network, but non-compliant under a lossy network. Section 7.5.2.2

shows that PoS systems, which allow multiple parties to produce blocks for the same

time slot, are not compliant. Notably, our negative results show that a party can gain

a non-negligible reward by being non-compliant. Finally, we evaluate compliance under

various externalities, i.e., an exchange rate, which models real-world prices, and exter-

nal rewards, which come as a result of successful attacks. We show that, historically, the

market’s response is not sufficient to disincentivize attacks, so penalties should be nec-

essary, for the level of which we provide estimations based on the ledger’s parameters

and the market’s expected behavior.

Chapter 7. Blockchain Nash Dynamics 136

7.1 The Setting

We consider a distributed protocol Π, which is executed by all parties in a set ℙ, and
which is performed over a number of time slots. Our analysis is restricted on executions

where every party 𝒫 ∈ ℙ is activated on each time slot. The activation is scheduled by

an environment 𝒵, which also provides the parties with inputs.

We use 𝜅 to denote Π’s security parameter, and negl(⋅) to denote that a function

is negligible, i.e., asymptotically smaller than the inverse of any polynomial. By [𝑛], we
denote the set {1,…,𝑛}. The expectation of a random variable 𝑋 is denoted by 𝐸[𝑋].

7.1.1 Network Model

We assume a peer-to-peer network. Specifically, parties do not communicate via point-

to-point connections, but rather use a variant of the diffuse functionality defined in [GKL15],

described as follows.

Diffuse Functionality. The functionality initializes a variable slot to 1, which is read-
able from all parties. In addition, it maintains a string Receive𝒫() for each party 𝒫. Each

party 𝒫 is allowed to fetch the contents of Receive𝒫() at the beginning of each time

slot. To diffuse a (possibly empty) message 𝑚, 𝒫 sends to the functionality 𝑚 and an

integer index 𝑖𝑚, which indicates the message delivery priority of 𝑚 (see below). In

turn, the functionality records 𝑚 and 𝑖𝑚. On each slot, every party completes its activ-

ity by sending a special Complete message to the functionality. When all parties submit

Complete, the functionality delivers the messages, which are diffused during this slot, as

follows. First, it groups all messages based on their associated index and sorts them,

with messages with smaller index having higher priority. Then, it randomizes the order

of each group’s messages, i.e., which are associated with the same index. Therefore,

eventually all messages are sorted in a well-defined order. Subsequently, the function-

ality includes all messages in the Receive𝒫() string of every party 𝒫 ∈ ℙ, following the
aforementioned order. Hence, all parties receive all diffused messages, without any in-

formation on each message’s creator. Finally, the functionality increases the value of slot

by 1.

Lossy Diffuse Functionality. The lossy diffuse functionality is similar to the above

variant, with one difference: it is parameterized with a probability 𝑑, which defines the

probability that a message 𝑚 is dropped, i.e., it is not delivered to any recipient. This

Chapter 7. Blockchain Nash Dynamics 137

functionality aims to model the setting where a network with stochastic delays is used

by an application, where users reject messages which are delivered with delay above

a (protocol-specific) limit. For example, various protocols, like Bitcoin [Nak08a], re-

solve message conflicts based on the order of delivery; thus, delaying a message for

long enough, such that a competing message is delivered beforehand, is equivalent to

dropping the message altogether.

7.1.2 Approximate Nash Equilibrium

An approximate Nash equilibrium is a common tool for expressing a solution to a non-

cooperative game involving 𝑛 parties 𝒫1,…,𝒫𝑛. Each party 𝒫𝑖 employs a strategy

𝑆𝑖. The strategy is a set of rules and actions the party makes, depending on what has

happened up to any point in the game, i.e., it defines the part of the entire distributed

protocol Π performed by 𝒫𝑖. There exists an “honest” strategy, defined by Π, which

parties may employ; for ease of notation, Π denotes both the distributed protocol and

the honest strategy. A strategy profile is a vector of all players’ strategies.

Each party 𝒫𝑖 has a game utility 𝑈𝑖, which is a real function that takes as input a

strategy profile. A strategy profile is an 𝜖-Nash equilibrium when no party can increase

its utility more than 𝜖 by unilaterally changing its strategy (Definition 28).

Definition 28. Let 𝜖 be a non-negative real number and 𝕊 be the set of all strategies a

party may employ. Also let 𝜎∗ = (𝑆∗
𝑖 ,𝑆∗

−𝑖) be a strategy profile of ℙ, where 𝑆∗
𝑖 is the strategy

followed by 𝒫𝑖 and 𝑆∗
−𝑖 denotes the 𝑛−1 strategies employed by all parties except 𝒫𝑖. We

say that 𝜎∗ is an 𝜖-Nash equilibrium w.r.t. a utility vector ̄𝑈 = ⟨𝑈1,…,𝑈𝑛⟩ if:

∀𝒫𝑖 ∈ ℙ ∀𝑆𝑖 ∈ 𝕊 �{𝑆∗
𝑖 } ∶ 𝑈𝑖(𝑆∗

𝑖 ,𝑆∗
−𝑖) ≥ 𝑈𝑖(𝑆𝑖,𝑆∗

−𝑖)−𝜖

7.2 Compliance Model

We assume a distributed protocol Π, which is performed by a set of parties ℙ over a

number of time slots. In our analysis, each party 𝒫 ∈ ℙ is associated with a number

𝜇𝒫 ∈ [0,1]. 𝜇𝒫 identifies 𝒫’s percentage of participation power in the protocol, e.g., its

votes, hashing power, staking power, etc. ; consequently, ∑𝒫∈ℙ 𝜇𝒫 = 1.

Chapter 7. Blockchain Nash Dynamics 138

7.2.1 Basic Notions

A protocol’s execution ℰ𝒵,𝜎,𝑟 at a given time slot 𝑟 is probabilistic and parameterized

by the environment 𝒵 and the strategy profile 𝜎 of the participating parties. As dis-

cussed, 𝒵 provides the parties with inputs and schedules their activation. For notation

simplicity, when 𝑟 is omitted, ℰ𝒵,𝜎 refers to the end of the execution, which occurs after

polynomially many time slots.

An execution trace ℑ𝒵,𝜎,𝑟 on a time slot 𝑟 is the value that the random variable ℰ𝒵,𝜎,𝑟
takes for a fixed environment 𝒵 and strategy profile 𝜎, and for fixed random coins of

𝒵, each party 𝒫 ∈ ℙ, and every protocol-specific oracle (see below). A party 𝒫’s view

of an execution trace ℑ𝒫
𝒵,𝜎,𝑟 consists of the messages that 𝒫 has sent and received until

slot 𝑟. For notation simplicity, we will omit the subscripts {𝒵,𝜎,𝑟} from both ℰ and ℑ,
unless required for clarity.

The protocol Π defines two components, which are related to our analysis: (1) the

oracle 𝒪Π, and (2) the “infraction” predicate 𝒳. We present these two components

below.

The Oracle 𝒪Π. The oracle 𝒪Π provides the parties with the core functionality

needed to participate in Π. For example, in a Proof-of-Work (PoW) system 𝒪Π is the

random or hashing oracle, whereas in an authenticated Byzantine Agreement protocol

𝒪Π is a signing oracle. On each time slot, a party can perform at most a polynomial

number of queries to 𝒪Π; in the simplest case, each party can submit a single query per

slot. Finally, 𝒪Π is stateless, i.e., its random coins are decided upon the beginning of the

execution and its responses do not depend on the order of the queries.

The Infraction Predicate 𝒳. The infraction predicate 𝒳 abstracts the deviant be-

havior that the analysis aims to capture. Specifically, 𝒳, when given the execution trace

and a party𝒫, responds with 1 only if𝒫 deviates from the protocol in somewell-defined

manner. Definition 29 provides the core generic property of 𝒳, i.e., that honest par-

ties never deviate. For ease of notation, we will next simply write 𝒳 unless required

for clarity. With hindsight, our analysis will focus on infraction predicates that capture

either producing conflicting messages or abstaining from the protocol.

Definition 29 (Infraction Predicate Property). The infraction predicate 𝒳 has the prop-

erty that, for every execution trace ℑ and for every party 𝒫 ∈ ℙ, if 𝒫 employs the (honest)

strategy Π then 𝒳(ℑ,𝒫) = 0.

Chapter 7. Blockchain Nash Dynamics 139

We stress that Definition 29 implies that 𝒳 being 0 is a necessary, but not a sufficient

condition, for a party to be honest. Specifically, for all honest parties 𝒳 is always 0, but
𝒳 might also be 0 for a party that deviates from Π, in such way that is not captured by

𝒳. In that case, we say that the party employs an𝒳−compliant strategy (Definition 30).

A strategy profile is 𝒳−compliant if all of its strategies are 𝒳−compliant; naturally, the
“all honest” profile 𝜎Π, i.e., when all parties employΠ, is – by definition –𝒳−compliant.

Definition 30 (Compliant Strategy). Let 𝒳 be an infraction predicate. A strategy 𝑆 is

𝒳-compliant if and only if 𝒳(ℑ,𝒫) = 0 for every party 𝒫 and for every trace ℑ where 𝒫
employs 𝑆.

The observer Ω. We assume a special party Ω, the (passive) observer. This party

does not actively participate in the execution, but it runs Π and observes the protocol’s

execution. Notably,Ω is always online, i.e., it bootstraps at the beginning of the execution

and is activated on every slot, in order to receive diffused messages. Therefore, the

observer models a user of the system, who frequently uses the system but does not

actively participate in its maintenance. Additionally, at the last round of the execution,

the environment 𝒵 activates only Ω, in order to receive the diffused messages of the

penultimate round and have a complete point of view.

Asmentioned in Section 7.1.2, we assume a utility𝑈𝑖 for every party𝒫𝑖, so the utility

vector defines the payoff values for each party. In our examples, a party’s utility depends

on two parameters: i) the party’s rewards, which are distributed by the protocol, from

the point of view of Ω; ii) the cost of participation.

7.2.2 Compliant Protocols

To define the notion of an (𝜖,𝒳)-compliant protocol Π, we require two parameters:

(i) the associated infraction predicate 𝒳 and (ii) a non-negative real number 𝜖. Following
Definition 30, 𝒳 determines the set of compliant strategies that the parties may follow

in Π. Intuitively, 𝜖 specifies the sufficient gain threshold after which a party switches

strategies. In particular, 𝜖 is used to define when a strategy profile 𝜎′ is directly reachable

from a strategy profile 𝜎, in the sense that 𝜎′ results from the unilateral deviation of a

party 𝒫𝑖 from 𝜎 and, by this deviation, the utility of 𝒫𝑖 increases more than 𝜖. Generally,
𝜎′ is reachable from 𝜎, if 𝜎′ results from a “path” of strategy profiles, starting from 𝜎,
which are sequentially related via direct reachability. Finally, we define the cone of a

profile 𝜎 as the set of all strategies that are reachable from 𝜎, including 𝜎 itself.

Chapter 7. Blockchain Nash Dynamics 140

Given the above definitions, we say that Π is (𝜖,𝒳)-compliant if the cone of the “all

honest” strategy profile 𝜎Π contains only profiles that consist of 𝒳−compliant strate-
gies. Thus, if a protocol is compliant, then the parties may (unilaterally) deviate from

the honest strategy only in a compliant manner, as dictated by 𝒳.

Formally, first we define “reachability” between two strategy profiles, as well as the

notion of a “cone” of a strategy profile w.r.t. the reachability relation, and then we

define a compliant protocol w.r.t. its associated infraction predicate.

Definition 31. Let: i) 𝜖 be a non-negative real number; ii) Π be a protocol run by parties

𝒫1,…,𝒫𝑛; iii) ̄𝑈 = ⟨𝑈1,…,𝑈𝑛⟩ be a utility vector, where 𝑈𝑖 is the utility of 𝒫𝑖; iv) 𝕊 be

the set of all strategies a party may employ. We provide the following definitions.

1. Let 𝜎,𝜎′ ∈ 𝕊𝑛 be two strategy profiles where 𝜎 = ⟨𝑆1,…,𝑆𝑛⟩ and 𝜎′ = ⟨𝑆′
1,…,𝑆′

𝑛⟩.
We say that 𝜎′ is directly 𝜖-reachable from 𝜎 w.r.t. ̄𝑈 , if there exists 𝑖 ∈ [𝑛] s.t. (i)

∀𝑗 ∈ [𝑛]\{𝑖} ∶ 𝑆𝑗 = 𝑆′
𝑗 and (ii) 𝑈𝑖(𝜎′) > 𝑈𝑖(𝜎)+𝜖.

2. Let 𝜎,𝜎′ ∈ 𝕊𝑛 be two distinct profiles. We say that 𝜎′ is 𝜖-reachable from 𝜎 w.r.t. ̄𝑈 ,

if there exist profiles 𝜎1,…,𝜎𝑘 such that (i) 𝜎1 = 𝜎, (ii) 𝜎𝑘 = 𝜎′, and (iii) ∀𝑗 ∈ [2,𝑘]
it holds that 𝜎𝑗 is directly 𝜖-reachable from 𝜎𝑗−1 w.r.t. ̄𝑈 .

3. For every strategy profile 𝜎 ∈ 𝕊𝑛 we define the (𝜖, ̄𝑈)-cone of 𝜎 as the set:

Cone𝜖,�̄�(𝜎) ∶= {𝜎′ ∈ 𝕊𝑛 | (𝜎′ = 𝜎)∨(𝜎′ is 𝜖-reachable from 𝜎 w.r.t. ̄𝑈)} .

Definition 32. Let: i) 𝜖 be a non-negative real number; ii) Π be a protocol run by the

parties 𝒫1,…,𝒫𝑛; iii) 𝒳 be an infraction predicate; iv) ̄𝑈 = ⟨𝑈1,…,𝑈𝑛⟩ be a utility vector,

where 𝑈𝑖 is the utility of party 𝒫𝑖; v) 𝕊 be the set of all strategies a party may employ; vi) 𝕊𝒳
be the set of 𝒳−compliant strategies.

A strategy profile 𝜎 ∈ 𝕊𝑛 is 𝒳−compliant if 𝜎 ∈ (𝕊𝒳)𝑛.

The (𝜖, ̄𝑈)-cone of Π, denoted by Cone𝜖,�̄�(Π), is the set Cone𝜖,�̄�(𝜎Π), i.e., the set

of all strategies that are 𝜖-reachable from the “all honest” strategy profile 𝜎Π = ⟨Π,…,Π⟩
w.r.t. ̄𝑈 , also including 𝜎Π.

Π is (𝜖,𝒳)-compliant w.r.t. ̄𝑈 if Cone𝜖,�̄�(Π) ⊆ (𝕊𝒳)𝑛, i.e., all strategy profiles in the

(𝜖, ̄𝑈)-cone of Π are 𝒳−compliant.

Proposition 1 shows that Definition 32 expresses a relaxation of the standard ap-

proximation Nash equilibrium (Definition 28).

Chapter 7. Blockchain Nash Dynamics 141

Proposition 1. Let: i) 𝜖 be a non-negative real number; ii) Π be a protocol run by the

parties 𝒫1,…,𝒫𝑛; iii) 𝒳 be an infraction predicate; iv) ̄𝑈 = ⟨𝑈1,…,𝑈𝑛⟩ be a utility vector,

with 𝑈𝑖 the utility of 𝒫𝑖. If Π is an 𝜖-Nash equilibrium w.r.t. ̄𝑈 (i.e., 𝜎Π = ⟨Π,…,Π⟩ is an

𝜖-Nash equilibrium w.r.t. ̄𝑈), then Π is (𝜖,𝒳)-compliant w.r.t. ̄𝑈 .

Proof. Assume that 𝜎Π is an 𝜖-Nash equilibrium w.r.t. ̄𝑈 and let 𝜎′ = (𝑆′
1,…,𝑆′

𝑛) be a
strategy profile. We will show that 𝜎′ is not directly 𝜖-reachable from 𝜎Π w.r.t. ̄𝑈 .

Assume that there exists 𝑖 ∈ [𝑛] s.t. ∀𝑗 ∈ [𝑛]\{𝑖} ∶ 𝑆′
𝑗 = Π. Since 𝜎Π is an 𝜖-Nash

equilibrium w.r.t. ̄𝑈 , it holds that 𝑈𝑖(𝜎′) ≤ 𝑈𝑖(𝜎Π)+𝜖. Therefore, Definition 31 is not

satisfied and 𝜎′ is not directly 𝜖-reachable from 𝜎Π w.r.t. ̄𝑈 .

Since no profiles are directly 𝜖-reachable from 𝜎Π w.r.t. ̄𝑈 , it is straightforward that

there are no 𝜖-reachable strategy profiles from 𝜎Π w.r.t. ̄𝑈 . The latter implies that the

(𝜖, ̄𝑈)-cone of Π contains only 𝜎Π, i.e., Cone𝜖,�̄�(Π) = {𝜎Π}. By Definitions 29 and 30,

𝜎Π is 𝒳−compliant, so we deduce that Π is (𝜖,𝒳)-compliant w.r.t. ̄𝑈 .

7.3 Blockchain Protocols

In this work, we focus on blockchain-based distributed ledger protocols. In the general

case, a ledger defines a global state, which is distributed across multiple parties and

is maintained via a consensus protocol. The distributed ledger protocol defines the

validity rules which allow a party to extract the final ledger from its view. A blockchain

is a distributed database, where each message 𝑚 is a block ℬ of transactions and each

transaction updates the system’s global state. Therefore, at any point of the execution,

a party 𝒫 holds some view of the global state, which comprises of the blocks that 𝒫 has

adopted. We note that, if at least one valid block is diffused (w.r.t. the validity rules of

the protocol), then every honest party can extract a final ledger from its execution view.

7.3.1 The Setting

Every blockchain protocol Π defines a message validity predicate 𝒱. A party 𝒫 accepts

a block ℬ, received during a slot 𝑟 of the execution, if it holds that 𝒱(ℑ𝒫
𝑟 ,ℬ) = 1.

For example, in Proof-of-WorK (PoW) systems like Bitcoin [Nak08a], a block is valid

if its hash is below a certain threshold, while in Proof-of-Stake (PoS) protocols like

Ouroboros [KRDO17], a block is valid if it has been created by a specific party, ac-

cording to a well-known leader schedule. In all cases, a block ℬ is valid only if the party

that creates it submits a query for ℬ to the oracle 𝒪Π beforehand.

Chapter 7. Blockchain Nash Dynamics 142

Each block ℬ is associated with the following metadata: i) an index index(ℬ); ii) the
party creator(ℬ) that created ℬ; iii) a set ancestors(ℬ) ⊆ ℑcreator(ℬ), i.e., blocks in the

view of creator(ℬ) (at the time of ℬ’s creation) referenced by ℬ.

Message references are implemented as hash pointers, given a hash functionH employed

by the protocol. Specifically, each block ℬ contains the hash of all blocks in the refer-

enced blocks ancestors(ℬ). Blockchain systems are typically bootstrapped via a global

common reference string, i.e., a “genesis” block ℬ𝐺. Therefore, the blocks form a hash

tree, stemming from ℬ𝐺. index(ℬ) is the height of ℬ in the hash tree. If ℬ references

multiple messages, i.e., belongs to multiple tree branches, index(ℬ) is the height of the
longest one.

The protocol also defines themessage equivalency operator, ≡. Specifically, twomes-

sages are equivalent if their hashes match, i.e., 𝑚1 ≡ 𝑚2 ⇔ H(𝑚1) = H(𝑚2). At a high
level, two equivalent messages are interchangeable by the protocol.

Infraction Predicate. In our analysis of blockchain systems, we consider two types

of deviant behavior (Definition 33): i) creating conflicting valid messages, ii) abstaining.

We choose these predicates because theymay lead to non-compliance in interesting use

cases. For the former, conflicting valid messages, i.e., chain forks, are the primary reason

for failure to achieve consensus, so exploring when a party is incentivized to initiate a

fork is particularly interesting. For the latter, increased and continuous participation

typically helps the safety of deployed systems, as motivating more users to participate

in a compliant manner increases the level of power that an adversary needs to reach in

order to break a system’s security.

Definition 33 (Blockchain Infraction Predicate). Given a party 𝒫 and an execution trace

ℑ𝒵,𝜎,𝑟, we define the following infraction predicates:

1. conflicting predicate: 𝒳𝑐𝑜𝑛𝑓(ℑ𝒵,𝜎,𝑟,𝒫) = 1 if ∃ℬ,ℬ′ ∈ ℑ𝒵,𝜎,𝑟 ∶ 𝒱(ℑ𝒫
𝒵,𝜎,𝑟,ℬ) =

𝒱(ℑ𝒫
𝒵,𝜎,𝑟,ℬ′) = 1∧ index(ℬ) = index(ℬ′)∧ℬ ≢ ℬ′ ∧creator(ℬ) = creator(ℬ′) =

𝒫;

2. abstaining predicate: 𝒳𝑎𝑏𝑠(ℑ𝒵,𝜎,𝑟,𝒫) = 1 if 𝒫 makes no queries to the oracle 𝒪Π
during slot 𝑟;

3. blockchain predicate: 𝒳𝑏𝑐(ℑ𝒵,𝜎,𝑟,𝒫) = 1 if it holds (𝒳𝑐𝑜𝑛𝑓(ℑ𝒵,𝜎,𝑟,𝒫) = 1) ∨
(𝒳𝑎𝑏𝑠(ℑ𝒵,𝜎,𝑟,𝒫) = 1).

Chapter 7. Blockchain Nash Dynamics 143

Remark. Preventing conflicting messages is not the same as resilience against sybil at-

tacks [Dou02]. Sybil resilience mechanisms restrict an attacker from creating multiple iden-

tities, in order to participate in a distributed system. In comparison, our infraction predicate

ensures that a user does not increase their utility by violating the infraction conditions for each

identity they control. Therefore, a system may be compliant but not sybil resilient, e.g., if

a party can participate via multiple identities but it cannot increase its utility by producing

conflicting messages, and vice versa.

Finally, at the end of the execution, the observer Ω outputs a chain 𝒞Ω,ℑ. Typically,

this is the longest valid chain, i.e., the longest branch of the tree that stems from genesis

ℬ𝐺.
1 In casemultiple longest chains exist, a choice is made either at randomor following

a chronological ordering of messages. The number of messages in 𝒞Ω,ℑ that are created

by a party 𝒫 is denoted by 𝑀𝒫,ℑ.

7.3.2 Utility: Rewards and Costs

For each execution, the blockchain protocol defines a number of total rewards, which

are distributed among the participating parties. For each party 𝒫, these rewards are

expressed via the reward random variable 𝑅𝒫,ℰ. For a specific trace ℑ, the random vari-

able takes a non-negative real value, denoted by 𝑅𝒫,ℑ. Intuitively, 𝑅𝒫,ℑ describes the

rewards that 𝒫 receives from the protocol from the point of view of the observer Ω,

i.e., w.r.t. the blocks accepted by Ω.

Our analysis restricts to systems where rewards are distributed to parties if and only

if the genesis block is extended by at least one block during the execution, in which case

at least one party receives a non-negative amount of rewards (Assumption 1).

Assumption 1. Let ℑ be an execution trace. If no block is produced during ℑ, then it

holds that ∀𝒫 ∈ ℙ ∶ 𝑅𝒫,ℑ = 0. If at least one block is produced during ℑ, then it holds that

∃𝒫 ∈ ℙ ∶ 𝑅𝒫,ℑ ≠ 0.

In addition to rewards, a party’s utility is affected by cost. Specifically, the cost random

variable 𝐶𝒫,ℰ expresses the operational cost that 𝒫 during an execution ℰ. For a fixed
trace ℑ, 𝐶𝒫,ℑ is a non-negative real value. Our analysis is restricted to cost schemes

which are linearly monotonically increasing in the number of queries that a party makes

to the oracle 𝒪Π, with no queries incurring zero cost (Assumption 2). Intuitively, this

1For simplicity we assume that the longest chain (in terms of blocks) also contains the most hashing
power, which is the metric used in PoW systems like Bitcoin.

Chapter 7. Blockchain Nash Dynamics 144

assumption considers the electricity cost of participation, while the cost of equipment

and other operations, such as parsing or publishing messages, is zero.

Assumption 2. For every execution trace ℑ, a party 𝒫’s cost is 𝐶𝒫,ℑ = 0 if and only if it

performs no queries to 𝒪Π in every time slot. Else, if during ℑ a party 𝒫 performs 𝑡 queries,
then its cost is 𝐶𝒫,ℑ = 𝑡 ⋅𝜆, for some fixed parameter 𝜆.

Next, we define two types of utility. The first type, Reward, considers the expected

rewards that a party receives when the cost is near 0, while the second type, Profit,

considers rewards minus participation cost.

Definition 34. Let 𝜎 be a strategy profile and ℰ𝜎 be an execution during which parties

follow 𝜎. We define two types of blockchain utility 𝑈𝒫 of a party 𝒫 for 𝜎:

1. Reward: 𝑈𝒫(𝜎) = 𝐸[𝑅𝒫,ℰ𝜎
]

2. Profit: 𝑈𝒫(𝜎) = 𝐸[𝑅𝒫,ℰ𝜎
]−𝐸[𝐶𝒫,ℰ𝜎

]

For the computation of 𝑈𝒫, the environment 𝒵 is fixed, while the expectation of

the random variables 𝑅𝒫,ℰ𝜎
and 𝐶𝒫,ℰ𝜎

is computed over the random coins of 𝒵, 𝒪Π,

and every party 𝒫 ∈ ℙ.
In the following sections, we evaluate the compliance of various Proof-of-Work

(PoW) and Proof-of-Stake (PoS) blockchain protocols w.r.t. two types of rewards,

fair and block-proportional.

7.4 Fair Rewards

As described in Section 7.2, each party 𝒫 controls a percentage 𝜇𝒫 of the system’s

participating power. Although this parameter is set at the beginning of the execution, it

is not always public. For instance, a party could obscure its amount of hashing power by

refraining from performing some queries. In other cases, each party’s power is published

on the distributed ledger and, for all executions, can be extracted from the observer’s

chain. A prime example of such systems is non-anonymous PoS ledgers, where each

party’s power is denoted by its assets, which are logged in real time on the ledger.

These systems, where power distribution is public, can employ a special type of

rewards, fair rewards.2 Specifically, the system defines a fixed, total number of rewards

ℛ > 0. At the end of an execution, if at least one block is created, each party 𝒫 receives

2The term fairness is an allusion to Fruitchains [PS17a].

Chapter 7. Blockchain Nash Dynamics 145

a percentage 𝜉(𝜇𝒫) of ℛ, where 𝜉(⋅) ∶ [0,1] → [0,1]; in the real world, 𝜉 is usually the

identity function. If no blocks are created during the execution, then every party gets 0
rewards.

Intuitively, fair rewards compensate users for investing in the system. Unless no

block is created (which typically happens with very small probability when the parties

honestly follow the protocol), the level of rewards depends solely on a party’s power,

and not in the messages diffused during the execution. Definition 35 formally describes

the family of fair reward random variables.

Definition 35 (Fair Rewards). For a total number of rewards ℛ ∈ ℝ>0, a fair reward

random variable 𝑅𝒫,ℰ satisfies the following:

1. ∀ℑ ∀𝒫 ∈ ℙ ∶ 𝑅𝒫,ℑ = { 𝜉(𝜇𝒫) ⋅ℛ, if at least one valid block is produced during ℑ
0, otherwise

2. ∑𝒫∈ℙ 𝜉(𝜇𝒫) = 1

where 𝜉 ∶ [0,1] → [0,1].

As shown in Theorem 6, blockchains with fair rewards are (𝜖,𝒳)-compliant for

the utility Reward (cf. Definition 34), where 𝜖 is typically a small value and 𝒳 is an

arbitrary associated infraction predicate. Intuitively, since a party is rewarded the same

amount regardless of their protocol-related actions, nobody can increase their rewards

by deviating from the honest strategy (as long as at least one block is produced).

Theorem 6. Let: i) Π be a blockchain protocol run by the parties 𝒫1,…,𝒫𝑛; ii) 𝒳 be

any infraction predicate associated with Π; iii) ̄𝑈 = ⟨𝑈1,…,𝑈𝑛⟩ be a utility vector, where

𝑈𝑖 is the utility Reward of party 𝒫𝑖; iv) ℛ be the total rewards distributed by the protocol;

v) 𝜉 ∶ [0,1] → [0,1] be a fair reward function; vi) 𝛼 be the probability that no blocks are

produced when all parties follow the honest strategy. Then, Π is (𝜖,𝒳)-compliant w.r.t. ̄𝑈 ,

for 𝜖 ∶= 𝛼 ⋅max
𝑗∈[𝑛]

{𝜉(𝜇𝒫𝑗
) ⋅ℛ}.

Proof. By Definition 35 and the definition of 𝛼, for the “all honest” strategy profile 𝜎Π ∶=
⟨Π,…,Π⟩, we have that Pr[𝑅𝒫𝑖,ℰ𝜎Π

= 𝜉(𝜇𝒫𝑖
)⋅ℛ] = 1−𝛼 and Pr[𝑅𝒫𝑖,ℰ𝜎Π

= 0] = 𝛼, for
every 𝑖 ∈ [𝑛]. Therefore, for every 𝑖 ∈ [𝑛], 𝑈𝑖(𝜎Π) = 𝐸[𝑅𝒫𝑖,ℰ𝜎𝒫

] = (1−𝛼)⋅𝜉(𝜇𝒫𝑖
)⋅ℛ.

Assume that for some 𝑖 ∈ [𝑛], 𝒫𝑖 unilaterally deviates from Π by employing a dif-

ferent strategy 𝑆𝑖. In this case, we consider the strategy profile 𝜎 = ⟨𝑆1,…,𝑆𝑛⟩ where
𝑆𝑗 = Π for 𝑗 ∈ [𝑛]\{𝑖}. Since 𝑈𝑖 is the utility Reward under fair rewards with ℛ,𝜉(⋅),
we have that for all random coins of the execution ℰ𝜎, the value of the reward random

Chapter 7. Blockchain Nash Dynamics 146

variable 𝑅𝒫𝑖,ℰ𝜎
is no more than 𝜉(𝜇𝒫𝑖

) ⋅ℛ. Consequently, 𝑈𝑖(𝜎) ≤ 𝜉(𝜇𝒫𝑖
) ⋅ℛ, and so

we have that

𝑈𝑖(𝜎) ≤ 𝑈𝑖(𝜎Π)+𝛼 ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ℛ ≤ 𝑈𝑖(𝜎Π)+𝛼 ⋅max

𝑗∈[𝑛]
{𝜉(𝜇𝒫𝑗

) ⋅ℛ} .

If 𝜖 ∶= 𝛼 ⋅ max
𝑗∈[𝑛]

{𝜉(𝜇𝒫𝑗
) ⋅ ℛ} and since 𝑖 and 𝑆𝑖 are arbitrary, we conclude that Π is a 𝜖-

Nash equilibrium w.r.t. ̄𝑈 . Thus, by Proposition 1, Π is (𝜖,𝒳)-compliant w.r.t. ̄𝑈 .

Theorem 6 is consistent with the incentives’ analysis of [KRDO17] under fair re-

wards. However, when introducing operational costs to analyze profit, a problem arises:

a user can simply abstain and be rewarded nonetheless. Such behavior results in a “free-

rider problem” [Bau04], where a user reaps some benefits while not under-paying them

or not paying at all. Theorem 7 formalizes this argument and shows that a blockchain

protocol, associated with the abstaining infraction predicate 𝒳𝑎𝑏𝑠 (cf. Definition 33),

under fair rewards is not (𝜖,𝒳𝑎𝑏𝑠)-compliant w.r.t. utility Profit, for reasonable values of

𝜖.

Theorem 7. Let: i) Π be a blockchain protocol run by the parties 𝒫1,…,𝒫𝑛; ii) 𝒳𝑎𝑏𝑠 be

the abstaining infraction predicate; iii) ̄𝑈 = ⟨𝑈1,…,𝑈𝑛⟩ be a utility vector, where 𝑈𝑖 is the

utility Profit of party 𝒫𝑖; iv) ℛ be the total rewards distributed by the protocol; v) 𝜉 ∶ [0,1] →
[0,1] be a fair reward function; vi) 𝛼 be the probability that no blocks are produced when all

parties follow the honest strategy.

For 𝑖 ∈ [𝑛], also let the following: i) 𝐶⊥
𝒫𝑖

be the minimum cost of 𝒫𝑖 across all possible

execution traces where 𝒫𝑖 employs Π; ii) 𝛽𝑖 be the probability that no blocks are produced

when 𝒫𝑖 abstains throughout the entire execution and all the other parties follow Π.

Then, for every 𝜖 ≥ 0 such that 𝜖 < max
𝑖∈[𝑛]

{𝐶⊥
𝒫𝑖

−(𝛽𝑖 −𝛼) ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ℛ}, the protocol Π

is not (𝜖,𝒳𝑎𝑏𝑠)-compliant w.r.t. ̄𝑈 .

Proof. By Definition 35 and the definition of 𝛼, for the “all honest” strategy profile 𝜎Π ∶=
⟨Π,…,Π⟩, we have that Pr[𝑅𝒫𝑖,ℰ𝜎Π

= 𝜉(𝜇𝒫𝑖
) ⋅ ℛ] = 1 − 𝛼 and Pr[𝑅𝒫𝑖,ℰ𝜎Π

= 0] = 𝛼,
for every 𝑖 ∈ [𝑛]. Since Π is an 𝒳𝑎𝑏𝑠-compliant strategy, if 𝒫𝑖 follows Π then it does

not abstain, i.e., it makes queries to 𝒪Π. Therefore, the cost of 𝒫𝑖 is at least 𝐶⊥
𝒫𝑖

and

for 𝜎Π, the utility Profit 𝑈𝑖(𝜎Π) is no more than

𝑈𝑖(𝜎Π) = 𝐸[𝑅𝒫𝑖,ℰ𝜎Π
]−𝐸[𝐶𝒫𝑖,ℰ𝜎Π

] ≤ (1−𝛼) ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ℛ−𝐶⊥

𝒫𝑖
.

Now assume that 𝒫𝑖 unilaterally deviates by following the “always abstain” strategy,

𝑆abs, which is of course not 𝒳𝑎𝑏𝑠-compliant. Then, 𝒫𝑖 makes no queries to 𝒪Π and,

Chapter 7. Blockchain Nash Dynamics 147

by Assumption 2, its cost is 0. Let 𝜎𝑖 be the strategy profile where 𝒫𝑖 follows 𝑆abs

and every party 𝒫 ≠ 𝒫𝑖 follows Π. By the definition of 𝛽𝑖, we have that Pr[𝑅𝒫𝑖,ℰ𝜎𝑖
=

𝜉(𝜇𝒫𝑖
) ⋅ℛ] = 1−𝛽𝑖 and Pr[𝑅𝒫𝑖,ℰ𝜎𝑖

= 0] = 𝛽𝑖.

By the definition of 𝑈𝑖, it holds that

𝑈𝑖(𝜎𝑖) = 𝐸[𝑅𝒫𝑖,ℰ𝜎𝑖
]−𝐸[𝐶𝒫𝑖,ℰ𝜎𝑖

] = (1−𝛽𝑖) ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ℛ−0 .

Assume that 𝐶⊥
𝒫𝑖

−(𝛽𝑖 −𝛼)⋅𝜉(𝜇𝒫𝑖
) ⋅ℛ > 0. Then, for 𝜖𝑖 < 𝐶⊥

𝒫𝑖
−(𝛽𝑖 −𝛼)⋅𝜉(𝜇𝒫𝑖

) ⋅ℛ,

we have that

𝑈𝑖(𝜎𝑖) = (1−𝛽𝑖) ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ℛ =

= (1−𝛼) ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ℛ+(𝛼−𝛽𝑖) ⋅ 𝜉(𝜇𝒫𝑖

) ⋅ℛ =
= (1−𝛼) ⋅ 𝜉(𝜇𝒫𝑖

) ⋅ℛ−𝐶⊥
𝒫𝑖

+𝐶⊥
𝒫𝑖

−(𝛽𝑖 −𝛼) ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ℛ ≥

≥ 𝑈𝑖(𝜎Π)+𝐶⊥
𝒫𝑖

−(𝛽𝑖 −𝛼) ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ℛ >

> 𝑈𝑖(𝜎Π)+𝜖𝑖

Let 𝑖∗ ∈ [𝑛] be such that 𝐶⊥
𝒫𝑖∗ − (𝛽𝑖∗ − 𝛼) ⋅ 𝜉(𝜇𝒫𝑖∗) ⋅ ℛ} = max

𝑖∈[𝑛]
{𝐶⊥

𝒫𝑖
− (𝛽𝑖 − 𝛼) ⋅

𝜉(𝜇𝒫𝑖
) ⋅ ℛ}. By the above, for every 0 ≤ 𝜖 < 𝐶⊥

𝒫𝑖∗ − (𝛽𝑖∗ − 𝛼) ⋅ 𝜉(𝜇𝒫𝑖∗) ⋅ ℛ}, we have

that 𝜎𝑖∗ is directly 𝜖-reachable from 𝜎Π w.r.t. ̄𝑈 .

Thus, 𝜎𝑖∗ is a non 𝒳𝑎𝑏𝑠-compliant strategy profile that is in Cone𝜖,�̄�(Π). Conse-

quently, for 0 ≤ 𝜖 < max
𝑖∈[𝑛]

{𝐶⊥
𝒫𝑖

− (𝛽𝑖 − 𝛼) ⋅ 𝜉(𝜇𝒫𝑖
) ⋅ ℛ}, it holds that Cone𝜖,�̄�(Π) ⊊

(𝕊𝒳𝑎𝑏𝑠
)𝑛, i.e., the protocol Π is not (𝜖,𝒳𝑎𝑏𝑠)-compliant w.r.t. ̄𝑈 .

Before concluding, let us examine the variables of the bound max
𝑖∈[𝑛]

{𝐶⊥
𝒫𝑖

−(𝛽𝑖 −𝛼) ⋅
𝜉(𝜇𝒫𝑖

)⋅ℛ} of Theorem 7. We note that, in the context of blockchain systems, a “party”

is equivalent to a unit of power; therefore, a party𝒫 that controls 𝜇𝒫 of the total power,

in effect controls 𝜇𝒫 of all “parties” that participate in the blockchain protocol.

To discuss 𝛼 and 𝛽𝑖, we first consider the liveness property [GK20b] of blockchain

protocols. Briefly, if a protocol guarantees liveness with parameter 𝑢, then a transaction
which is diffused on slot 𝑟 is part of the (finalized) ledger of every honest party on round
𝑟 + 𝑢. Therefore, assuming that the environment gives at least one transaction to the

parties, if a protocol Π guarantees liveness unless with negligible probability negl(𝜅),3
then at least one block is created during the execution with overwhelming probability

(in 𝜅).
Now, we consider the probabilities 𝛼 and 𝛽𝑖. The former is negligible, since consen-

sus protocols typically guarantee liveness against a number of crash (or Byzantine) faults,

3Recall that 𝜅 is Π’s security parameter, while negl(⋅) is a negligible function.

Chapter 7. Blockchain Nash Dynamics 148

let alone if all parties are honest. The latter, however, depends on 𝒫𝑖’s percentage of

power 𝜇𝒫𝑖
. For instance, consider Ouroboros, which is secure if a deviating party 𝒫𝑖

controls less than 1
2 of the staking power and all others employ Π. Thus, if 𝜇𝒫𝑖

= 2
3 and

𝒫𝑖 abstains, the protocol cannot guarantee liveness, i.e., it is probable that no blocks

are created. However, if 𝜇𝒫𝑖
= 1

4 , then liveness is guaranteed with overwhelming prob-

ability; hence, even if 𝒫𝑖 abstains, at least one block is typically created. Corollary 2

generalizes this argument, by showing that, if enough parties participate, then at least

one of them is small enough, such that its abstaining does not result in a system halt,

hence it is incentivized to be non-compliant.

Corollary 2. Let Π be a blockchain protocol, with security parameter 𝜅, which is run by 𝑛
parties, under the same considerations of Theorem 7. Additionally, assume thatΠ has liveness

with security threshold 1
𝑥 in the following sense: for every strategy profile 𝜎, if ∑

𝒫∈ℙ−𝜎

𝜇𝒫 < 1
𝑥 ,

where ℙ−𝜎 is the set of parties that deviate from Π when 𝜎 is followed, then Π guarantees

liveness with overwhelming (i.e., 1−negl(𝜅)) probability.
If 𝑥 < 𝑛, then for (non-negligible) values 𝜖 < max

𝑖∈[𝑛]
{𝐶⊥

𝒫𝑖
}−negl(𝜅), Π is not (𝜖,𝒳𝑎𝑏𝑠)-

compliant w.r.t. ̄𝑈 .

Proof. First, since Π guarantees liveness even under some byzantine faults, 𝛼 = negl(𝜅).
Second, if 𝑥 < 𝑛, then there exists 𝑖 ∈ [𝑛] such that 𝜇𝒫𝑖

< 1
𝑥 . To prove this, if 𝑛 > 𝑥

and ∀𝑗 ∈ [𝑛] ∶ 𝜇𝒫𝑗
≥ 1

𝑥 then ∑
𝑗∈[𝑛]

𝜇𝒫𝑖
≥ 𝑛

𝑥 > 1. This contradicts to the definition of the

parties’ participating power (cf. Section 7.2), where it holds that ∑
𝑗∈[𝑛]

𝜇𝒫𝑗
= 1.

Now consider the strategy profile 𝜎 where 𝒫𝑖 abstains and all the other parties

honestly follow Π. Then, by definition, ℙ−𝜎 = {𝒫𝑖} and therefore,

∑
𝒫∈ℙ−𝜎

𝜇𝒫 = 𝜇𝒫𝑖
< 1

𝑥 .

Thus, by the assumption for Π, we have that if the parties follow 𝜎, then Π guarantees

liveness with 1−negl(𝜅) probability. Hence, 𝛽𝑖 = negl(𝜅). Finally, since 𝜉(𝜇𝒫𝑖
) ∈ [0,1]

and ℛ is a finite value irrespective of the parties’ strategy profile, the value (𝛽𝑖 − 𝛼) ⋅
𝜉(𝜇𝒫𝑖

) ⋅ℛ is also negligible in 𝜅.

The minimal cost 𝐶⊥
𝒫𝑖

of honest participation for 𝒫𝑖 depends on the blockchain sys-

tem’s details. In PoW systems, where participation consists of repeatedly performing

computations, cost increases with the percentage of mining power; for instance, con-

trolling 51% of Bitcoin’s mining power for 1 hour costs $700,000.4 In PoS systems, cost

4https://www.crypto51.app [May 2021]

https://www.crypto51.app

Chapter 7. Blockchain Nash Dynamics 149

is typically irrespective of staking power, since participation consists only of monitoring

the network and regularly signing messages; for example, running a production-grade

Cardano node costs $140 per month5. Therefore, taking Corollary 2 into account, the

upper bound max
𝑖∈[𝑛]

{𝐶⊥
𝒫𝑖

}−negl(𝜅) of 𝜖 is typically rather large for PoS systems.

The free-rider hazard is manifested in Algorand6, a cryptocurrency system that fol-

lows the Algorand consensus protocol [CGMV18, GHM+17b] and employs fair re-

wards, as defined above. Its users own “Algo” tokens and transact over a ledger main-

tained by “participation nodes”, which run the Algorand protocol and extend the ledger

via blocks. Each user receives a fixed reward7 per Algo token they own [Fou20], awarded

with every block. Users may run a participation node, but are not rewarded [FMJR20]

for doing so, and participation is proportional to the amount of Algos that the user owns.

Therefore, a party that owns a few Algos will expectedly abstain from participation in

the consensus protocol.

In conclusion, fair rewards in PoS protocols may incentivize users to abstain. In turn,

this can impact the system’s performance, e.g., delaying block production and transac-

tion finalization. In the extreme case, when multiple parties can change their strategy

simultaneously, it could result in a “tragedy of the commons” situation [Llo33], where

all users abstain and the system grinds to a halt.

Remark. This section illustrates a difference between PoW and PoS. In PoS systems, each

party’s power is registered on the ledger (in the form of assets), without requiring any action

from each party. In PoW, a party’s power becomes evident only after the party puts their

hardware to work. This is demonstrated in Fruitchains [PS17a], a PoW protocol where each

party receives a reward (approximately) proportional to their mining power. However, the

PoW protocol cannot identify each party’s power, unless the party participates and produces

some blocks (or “fruits”). Therefore, since the proof of Theorem 7 relies on abstaining, this

result does not directly translate to Fruitchains, or similar PoW protocols.

7.5 Block-Proportional Rewards

The arguably most common type of rewards in blockchain systems is block-proportional

rewards. Specifically, each party is rewarded proportionally to the number of blocks

5https://forum.cardano.org/t/realistic-cost-to-operate-stake-pool/40056 [September 2020]
6https://algorand.foundation
7For a weekly execution, the reward per owned Algo is 0.001094 Algos. [https://

algoexplorer.io/rewards-calculator [October 2020]

https://algorand.foundation
https://algoexplorer.io/rewards-calculator
https://algoexplorer.io/rewards-calculator

Chapter 7. Blockchain Nash Dynamics 150

that it contributes to the final chain, which is output at the end of the execution.

Block-proportional rewards are a generalization of the proportional allocation rule,

which, for example, is employed in Bitcoin. The proportional allocation rule states

that a party 𝒫’s expected rewards of a single block are 𝜇𝒫. As shown by Chen et

al. [CPR19], this is the unique allocation rule that satisfies a list of desirable proper-

ties, namely: i) non-negativity, ii) budget-balance, iii) symmetry, iv) sybil-proofness, and

v) collusion-proofness.

Our work expands the scope by considering proportional rewards w.r.t. blocks for

the entirety of the execution. Specifically, Definition 36 describes block-proportional

rewards, where a party 𝒫’s rewards are strictly monotonically increasing on the number

of blocks that 𝒫 contributes to the chain output by the observer Ω. The definition

considers a proportional reward function 𝜚(⋅, ⋅) that takes as input the chain of Ω and 𝒫
and outputs a value in [0,1].

Definition 36 (Block-Proportional Rewards). For an execution trace ℑ, let 𝒞Ω,ℑ be the

chain output by Ω and ℛΩ,ℑ ∈ ℝ≥0 be the total number of rewards which are distributed by

the protocol, according to Ω. Let 𝑀𝒫,ℑ be the number of blocks in the chain output by Ω
which are produced by 𝒫. A block-proportional reward random variable 𝑅𝒫,ℰ satisfies the

following conditions:

1. ∀ℑ ∀𝒫 ∈ ℙ ∶ 𝑅𝒫,ℑ = 𝜚(𝒞Ω,ℑ,𝒫) ⋅ℛΩ,ℑ

2. ∀ℑ ∶ ∑𝒫∈ℙ 𝜚(𝒞Ω,ℑ,𝒫) = 1

3. ∀ℑ ∀𝒫,𝒫′ ∈ ℙ ∶ 𝑀𝒫,ℑ > 𝑀𝒫′,ℑ ⇒ 𝜚(𝒞Ω,ℑ,𝒫) > 𝜚(𝒞Ω,ℑ,𝒫′)

7.5.1 Bitcoin

In this section, we study the Bitcoin [Nak08a] blockchain protocol. Bitcoin is a prime

example of a family of protocols that links the amount of valid blocks, that each party

can produce per execution, with the party’s hardware capabilities. This family includes:

i) Proof-of-Work-based protocols like Ethereum [Woo14], Bitcoin NG [EGSVR16], or

Zerocash [BCG+14]; ii) Proof-of-Space [DFKP15] and Proof-of-Space-Time [MO19]

protocols like SpaceMint [PKF+18] and Chia [AAC+17, CP18].

Execution Details. Typically, protocols from the aforementioned family enforce

that, when all parties follow the protocol honestly, the expected percentage of blocks

Chapter 7. Blockchain Nash Dynamics 151

created by a party 𝒫 is 𝜇𝒫 of the total blocks produced by all parties during the execu-

tion. Along the lines of the formulation in [GKL15, GKL17], in the Bitcoin protocol, each

party 𝒫 can make at most 𝜇𝒫 ⋅ 𝑞 queries to the hashing oracle 𝒪Π per time slot, where

𝑞 is the total number of queries that all parties can make to 𝒪Π during a time slot. We

note that when 𝒫 follows the Bitcoin protocol, they perform exactly 𝜇𝒫 ⋅ 𝑞 queries to

the hashing oracle. Each query can be seen as an independent block production trial and

is successful with probability 𝛿, which is a protocol-specific “mining difficulty” parameter.

From the point of view of the observer Ω, a party 𝒫 is rewarded a fixed amount 𝑅
for each block they contribute to the chain output by Ω. Then, Bitcoin implements a

special case of block-proportional rewards (cf. Definition 36), such that:

• The total number of rewards for ℑ is

ℛΩ,ℑ = ∣𝒞Ω,ℑ∣ ⋅𝑅 = (∑
�̂�∈ℙ

𝑀�̂�,ℑ) ⋅𝑅 ,

where | ⋅ | denotes the length of a chain in blocks.

• The proportional reward function 𝜚(⋅, ⋅) is defined as

𝜚(𝒞Ω,ℑ,𝒫) = 𝑀𝒫,ℑ
∣𝒞Ω,ℑ∣ = 𝑀𝒫,ℑ

∑�̂�∈ℙ 𝑀�̂�,ℑ

Thus, by Definition 36, we have that

∀ℑ ∀𝒫 ∈ ℙ ∶ 𝑅𝒫,ℑ = 𝜚(𝒞Ω,ℑ,𝒫) ⋅ℛΩ,ℑ = 𝑀𝒫,ℑ ⋅𝑅 . (7.1)

In Bitcoin, on each time slot a party keeps a local chain, which is the longest among

all available chains. If multiple longest chains exist, the party follows the chronological

ordering of messages.

Following, we assume that none of the participating parties has complete control

over message delivery, i.e., apart from the preference index (cf. Section 7.1.1). There-

fore, when two parties 𝒫,𝒫′ produce blocks for the same index on the same time slot,

it may be unclear which is adopted by third parties that follow the protocol.

Furthermore, the index of each block 𝑚 is an integer that identifies the distance of

𝑚 from ℬ𝐺, i.e., its height in the tree of blocks. Blocks on the same height, but different

branches, have the same index but are non-equivalent (recall, that two messages are

equivalent if their hash is equal).

Chapter 7. Blockchain Nash Dynamics 152

Bitcoin is a Compliant Protocol w.r.t. Reward. We prove that Bitcoin is a

(Θ(𝛿2),𝒳)-compliant protocol under the utility Reward, where 𝒳 is any associated in-

fraction predicate. By Definition 34 and Eq. (7.1), we have that when parties follow the

strategy profile 𝜎, the utility 𝑈𝒫 of party 𝒫 is

𝑈𝒫(𝜎) = 𝐸[𝑀𝒫,ℰ𝜎
] ⋅𝑅 , (7.2)

where 𝑀𝒫,ℰ𝜎
is the (random variable) number of blocks produced by 𝒫 in the chain

output by Ω and 𝑅 is the fixed amount of rewards per block. Our analysis considers

typical values of the success probability 𝛿, sufficiently small such that 𝛿 ⋅𝑞 < 1 (recall that

𝑞 is the total number of oracle queries available to all parties per slot).

We say that party 𝒫 is successful during time slot 𝑟, if 𝒫 manages to produce at least

one block, i.e., at least one oracle query submitted by 𝒫 during 𝑟 was successful. The

time slot 𝑟 is uniquely successful for 𝒫, if no other party than 𝒫 manages to produce a

block in 𝑟. We prove the following lemma.

Lemma 4. Assume an execution trace ℑ of the Bitcoin protocol where all parties follow the

honest strategy. Let ℬ1,…,ℬ𝑘 be a sequence of blocks produced by party 𝒫 ∈ ℙ during a

time slot 𝑟 that was uniquely successful for 𝒫 in ℑ. Then, ℬ1,…,ℬ𝑘 will be included in the

chain output by the observer Ω.

Proof. Let ℎ be the height of ℬ1. Then, for every 𝑗 ∈ {1,…,𝑘}, the height of the block
ℬ𝑗 is ℎ + 𝑗 − 1. Assume for the sake of contradiction that there is a 𝑗∗ ∈ [𝑘] such that

ℬ𝑗∗ is not in the observer’s chain. Since each block contains the hash of the previous

block in the chain of Ω, the latter implies that the subsequence ℬ𝑗∗,…,ℬ𝑘 is not in the

observer’s chain. There are two reasons that ℬ𝑗∗ is missing from the observer’s chain.

1. The observer Ω never received ℬ𝑗∗ . However, after the end of time slot 𝑟, Ω will

be activated and fetch the messages included in its ReceiveΩ() string. Therefore,
the case that Ω never received ℬ𝑗∗ cannot happen.

2. The observer has another block ℬ′
𝑗∗ included in its chain that has the same height,

ℎ+𝑗∗ −1, as ℬ𝑗∗ . Since 𝑟 was uniquely successful for 𝒫 in ℑ, the block ℬ′
𝑗∗ must

have been produced in a time slot 𝑟′ that is different than 𝑟. Assume that 𝒫
produced the block sequence ℬ′

𝑗∗,…,ℬ′
𝑘′ during 𝑟′. We examine the following

two cases:

(a) 𝑟 > 𝑟′: then ℬ′
𝑗∗ was produced before ℬ𝑗∗ , so in time slot 𝑟′ +1 all parties

received (at least) the sequence ℬ′
𝑗∗,…,ℬ′

𝑘′ . All parties select the longest

Chapter 7. Blockchain Nash Dynamics 153

chain, so the chain that they will select will have at least ℎ+𝑘′ −1 ≥ ℎ+𝑗∗ −
1 number of blocks in 𝑟′ +1. Thus, for time slot 𝑟 ≥ 𝑟′ +1 the parties submit

queries for producing blocks which height is at least ℎ+𝑘′ > ℎ+𝑗∗ −1. So
at time slot 𝑟, the party 𝒫 cannot have produced a block which height is

≤ ℎ+𝑗∗ −1.

(b) 𝑟 < 𝑟′: then ℬ𝑗∗ was produced before ℬ′
𝑗∗ . So in time slot 𝑟 + 1 all parties

receive the sequence ℬ1,…,ℬ𝑘. Thus, they will adopt a chain with at least

ℎ+𝑘 −1 ≥ ℎ+𝑗∗ −1 number of blocks. Thus, for time slot 𝑟′ ≥ 𝑟 +1 the

parties submit queries for producing blocks with height at least ℎ+𝑘 > ℎ+
𝑗∗ − 1. Therefore, 𝒫 cannot have produced a block of height ≤ ℎ + 𝑗∗ − 1
during time slot 𝑟′.

By the above, ℬ𝑗∗ is a block with height ℎ + 𝑗∗ − 1 received by Ω and no other block

with height ℎ + 𝑗∗ − 1 is included in Ω’s chain. Since Ω adopts the longest chain, there

must be a block with height ℎ + 𝑗∗ − 1 that is included in its chain. It is straightforward

that this block will be ℬ𝑗∗ , which leads to contradiction.

Subsequently, we apply Lemma 4 to the proof of the main theorem of this subsec-

tion, stated below.

Theorem 8. Let 𝑁 be the number of time slots of the execution and 𝒳 be any associated

infraction predicate. Let ̄𝑈 be the utility vector where each party employs the utility Reward.

Then, the Bitcoin protocol is (𝜖,𝒳)-compliant w.r.t. ̄𝑈 , for 𝜖 ∶= 𝑁𝑅𝑞2

2 𝛿2 .

Proof. We will show that the Bitcoin protocol is an 𝜖-Nash equilibrium w.r.t. ̄𝑈 , for

𝜖 ∶= 𝑁𝑅𝑞2

2 𝛿2. By Proposition 1, the latter implies that the Bitcoin protocol is (𝜖,𝒳)-
compliant w.r.t. ̄𝑈 .

Consider a protocol execution where all parties follow the honest strategy Π, with

𝜎Π denoting the profile ⟨Π,…,Π⟩. Let 𝒫 be a party and 𝜇𝒫 be its mining power. For

𝑟 ∈ [𝑁], let 𝑋𝜎Π
𝒫,𝑟 be the random variable that is 1 if the time slot 𝑟 is uniquely successful

for 𝒫 and 0 otherwise. By protocol description, a party 𝒫′ makes 𝜇𝒫′ ⋅ 𝑞 oracle queries

Chapter 7. Blockchain Nash Dynamics 154

during 𝑟, each with success probability 𝛿. Thus:

Pr[𝑋𝜎Π
𝒫,𝑟 = 1] =

=Pr[𝒫 is successful during 𝑟]⋅
⋅Pr[all the other parties produce no blocks in 𝑟] =

=(1−(1−𝛿)𝜇𝒫𝑞) ⋅ ∏
𝒫′≠𝒫

(1−𝛿)𝜇𝒫′𝑞 =

=(1−(1−𝛿)𝜇𝒫𝑞) ⋅ (1−𝛿)(1−𝜇𝒫)𝑞 = (1−𝛿)(1−𝜇𝒫)𝑞 −(1−𝛿)𝑞 .

(7.3)

The random variable 𝑋𝒫,ℰ𝜎Π
∶= ∑𝑟∈[𝑁] 𝑋

𝜎Π
𝒫,𝑟 expresses the number of uniquely

successful time slots for 𝒫. By Eq. (7.3), 𝑋Π
𝒫 follows the binomial distribution with 𝑁

trials and probability of success (1 − 𝛿)(1−𝜇𝒫)𝑞 − (1 − 𝛿)𝑞. Therefore: 𝐸[𝑋𝒫,ℰ𝜎Π
] =

𝑁((1−𝛿)(1−𝜇𝒫)𝑞 −(1−𝛿)𝑞).
Let 𝑀𝒫,ℰ𝜎Π

be the number of blocks produced by 𝒫 included in the chain output

by the observer Ω. In a uniquely successful time slot 𝑟, 𝒫 produces at least one block,

and by Lemma 4, all the blocks that 𝒫 produces during 𝑟 will be included in the chain

output by the observer. Therefore, for all random coins 𝑀𝒫,ℰ𝜎Π
≥ 𝑋𝒫,ℰ𝜎Π

and so it

holds that:

𝐸[𝑀𝒫,ℰ𝜎Π
] ≥ 𝐸[𝑋𝒫,ℰ𝜎Π

] = 𝑁((1−𝛿)(1−𝜇𝒫)𝑞 −(1−𝛿)𝑞) . (7.4)

Now assume that 𝒫 decides to unilaterally deviate from the protocol, following a

strategy 𝑆. Let 𝜎 denote the respective strategy profile. Let 𝑍𝒫,ℰ𝜎
be the number

of blocks that 𝒫 produces by following 𝑆 and 𝑀𝒫,ℰ𝜎
be the number of blocks pro-

duced by 𝒫 that will be included in the chain output by Ω. Clearly, for all random coins

𝑀𝒫,ℰ𝜎
≤ 𝑍𝒫,ℰ𝜎

. Without loss of generality, we may assume that 𝒫 makes all of their

𝑁𝜇𝒫𝑞 available oracle queries (indeed, if 𝒫 made less than 𝑁𝜇𝒫𝑞 queries then on av-

erage it would produce less blocks). Thus, we observe that 𝑍𝒫,ℰ𝜎
follows the binomial

distribution with 𝑁𝜇𝒫𝑞 trials and probability of success 𝛿. Thus:

𝐸[𝑀𝒫,ℰ𝜎
] ≤ [𝑍𝒫,ℰ𝜎

] = 𝑁𝜇𝒫𝑞𝛿 . (7.5)

By definition of 𝑈𝒫 in Eq. (7.2) and Eq. (7.4) and (7.5), for fixed block rewards 𝑅
and for every strategy 𝑆 that 𝒫 may follow, we have:

𝑈𝒫(𝜎)−𝑈𝒫(𝜎Π) = 𝐸[𝑀𝒫,ℰ𝜎
] ⋅𝑅 −𝐸[𝑀𝒫,ℰ𝜎Π

] ⋅𝑅 ≤

≤ 𝑁𝜇𝒫𝑞𝛿𝑅 −𝑁((1−𝛿)(1−𝜇𝒫)𝑞 −(1−𝛿)𝑞)𝑅 .
(7.6)

Chapter 7. Blockchain Nash Dynamics 155

By Bernoulli’s inequality, we have that: (1 − 𝛿)(1−𝜇𝒫)𝑞 ≥ 1 − (1 − 𝜇𝒫)𝑞𝛿. Besides, by
binomial expansion, and the assumption that 𝛿 ⋅𝑞 < 1 we have that: (1−𝛿)𝑞 ≤ 1−𝑞𝛿 +
𝑞2

2 𝛿2. Thus, by applying the two above inequalities in Eq. (7.6), we get that:

𝑈𝒫(𝜎)−𝑈𝒫(𝜎Π) ≤ 𝑁𝜇𝒫𝑞𝛿𝑅 −𝑁((1−𝛿)(1−𝜇𝒫)𝑞 −(1−𝛿)𝑞)𝑅 ≤

≤𝑁𝜇𝒫𝑞𝛿𝑅 −𝑁(1−(1−𝜇𝒫)𝑞𝛿 −(1−𝑞𝛿 + 𝑞2

2 𝛿2))𝑅 =

=𝑁𝜇𝒫𝑞𝛿𝑅 −𝑁(𝜇𝒫𝑞𝛿 − 𝑞2

2 𝛿2)𝑅 = 𝑁𝑅𝑞2

2 𝛿2

(7.7)

By Eq. (7.7), Bitcoin is an 𝜖-Nash equilibrium for 𝜖 ∶= 𝑁𝑅𝑞2

2 𝛿2.

The result of Theorem 8 shows that Bitcoin w.r.t. rewards is compliant, by prov-

ing that it is an approximate Nash equilibrium. This is in agreement with previous re-

sults [KDF13, KS19]. Similar results exist for Bitcoin w.r.t. profit [BGM+18, KS19],

therefore compliance results for this utility are expected to also be achievable.

Remark. A well-known result from the Selfish Mining attack [ES14, SSZ16] is that Bitcoin is

not an equilibrium with respect to relative rewards. Therefore, we stress that the above anal-

ysis concerns the utility of absolute rewards, although evaluating compliance under relative

rewards is an interesting open question.

7.5.2 Proof-of-Stake

Proof-of-Stake (PoS) systems differ from Bitcoin in a few points. Typically, the execution

of such systems is organized in epochs, each consisting of a fixed number 𝑙𝑒 of time slots.

On each slot, a specified set of parties is eligible to participate in the protocol. Depending

on the protocol, the leader schedule of each epoch may or may not be a priori public.

The core difference from PoW concerns the power 𝜇𝒫 of each party. In PoS, 𝜇𝒫
represents their stake in the system, i.e., the number of coins, that 𝒫 owns. Stake is

dynamic, therefore the system’s coins may change hands and the leader schedule of

each epoch depends on the stake distribution at the beginning of the epoch.8 As with

Bitcoin, each party participates proportionally to their power, so, on expectation, the

ratio of slots for which 𝒫 is leader, over the total number of the epoch’s slots, is 𝜇𝒫.

Moreover, in PoS protocols, the oracle 𝒪Π does not perform hashing as in Bit-

coin. Instead, it is parameterized by the leader schedule and typically performs signing.

8In reality, the snapshot of the stake distribution is retrieved at an earlier point of the previous epoch,
but we can employ this simplified version without loss of generality

Chapter 7. Blockchain Nash Dynamics 156

The signature output by 𝒪Π is valid if and only if the input message is submitted by the

leader of the slot, during which 𝒪Π is responding. This introduces two important con-

sequences: i) only the slot leader can produce valid messages during a given slot; ii) the

leader can produce as many valid messages as the number of possible queries to 𝒪Π.

In the upcoming paragraphs we use the following notation:

• 𝐶 : the cost of a single query to 𝒪Π;

• 𝑅: the (fixed) reward per block;

• 𝑒: the number of epochs in an execution;

• 𝑙𝑒: the number of slots per epoch;

• 𝜇𝒫,𝑗: the power of party 𝒫 on epoch 𝑗.

7.5.2.1 Single-Leader Proof-of-Stake

As before, we analyze a representative of a family of protocols, in this case the PoS

protocol Ouroboros [KRDO17]. This family includes systems like EOS9, Steem10, and

Ouroboros BFT [KR18]. We again utilize the blockchain infraction predicates (cf. Def-

inition 33). As shown in Section 7.4, fair rewards do not necessarily guarantee compli-

ance; as Ouroboros itself does not define rewards, we now consider the same block-

proportional rewards (cf. Definition 36) as Bitcoin (i.e., fixed rewards per block).

On each slot, Ouroboros defines a single party, the “slot leader”, as eligible to create

a valid message. Specifically, the protocol restricts that a leader cannot extend the chain

with multiple blocks for the same slot, therefore all honest parties extend their chain

by at most 1 block per slot. The leader schedule is public and is computed at the be-

ginning of each epoch via a secure, publicly verifiable Multi-Party Computation (MPC)

sub-protocol, which cannot be biased by any single party. To prevent long-range at-

tacks [But14], Ouroboros employs a form of rolling checkpoints (“a bounded-depth

longest-chain rule” [KRDO17]), i.e., a party ignores forks that stem from a block older

than a (protocol-specific) limit from the adopted chain’s head.

Ouroboros is a representative of a family of protocols that demonstrates the fol-

lowing properties:

• the execution is organized in epochs;

9https://developers.eos.io/welcome/latest/protocol/consensus_protocol
10https://steem.com/

https://developers.eos.io/welcome/latest/protocol/consensus_protocol
https://steem.com/

Chapter 7. Blockchain Nash Dynamics 157

• within each epoch, a single party (the leader) is eligible to produce a message per

index;

• a party which is online considers the blocks of each past epoch finalized (i.e., does

not remove them in favor of a competing, albeit possibly longer, chain);

• no single party with power less than 1
2 can bias the epoch’s leader schedule.

Synchronous network. First, we assume a synchronous network (cf. Section 7.1.1).

Theorem 9 shows thatOuroboros with block-proportional rewards under synchronous

networks is (𝜖,𝒳)-compliant, 𝒳 being any associated infraction predicate, for negligible

𝜖; this result is in line with the informal incentives’ analysis of Ouroboros [KRDO17].

Theorem 9. Assume i) a synchronous network (cf. Section 7.1.1), ii) any associated in-

fraction predicate 𝒳, and iii) that ∀𝒫 ∈ ℙ ∶ 𝜇𝒫 < 1
2 . Ouroboros with block-proportional

rewards (cf. Definition 36, for fixed block reward 𝑅) is (𝜖,𝒳)-compliant (cf. Definition 32)

w.r.t. utility Reward (cf. Definition 34) and, if 𝑅 > 𝐶 , it is also (𝜖,𝒳)-compliant w.r.t. utility

Profit, in both cases for negligible 𝜖.

Proof. To prove the theorem, it suffices to show that, if the assumptions hold, Ouroboros

is an 𝜖-Nash equilibrium (cf. Proposition 1), i.e., no party can increase its reward more

than 𝜖 by unilaterally deviating from the protocol, where 𝜖 = negl(𝜅).
First, if all parties control a minority of staking power, no single party can bias the

slot leader schedule for any epoch (unless with negl(𝜅) probability). Therefore, the

(maximum) expected number of slots for which each party 𝒫 is leader is ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅
𝜇𝒫,𝑗, where 𝜇𝒫,𝑗 is the percentage of staking power of 𝒫 during the 𝑗-th epoch.

Second, if all parties follow Π, then the total expected rewards for each party 𝒫
are 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗. This is a direct consequence of the network synchronicity

assumption. Specifically, on slot 𝑟 the (single) leader 𝒫 creates exactly one block ℬ,

which extends the longest chain (adopted by 𝒫). At the beginning of slot 𝑟+1, all other
parties receive ℬ and, since ℬ is now part of the (unique) longest chain, all parties adopt

it. Consequently, all following leaders will extend the chain that containsℬ, so eventually

ℬ will be in the chain output by Ω. Therefore, if all parties follow the protocol and no

party can bias the leader schedule, then no party can increase its expected rewards by

deviating from the protocol.

Regarding profit, a leader creates a block by performing a single query to 𝒪Π. Ad-

ditionally, cost depends only on the number of such queries. Therefore, if the cost of

Chapter 7. Blockchain Nash Dynamics 158

performing a single query is less than 𝑅, then the profit per slot is larger than 0, so
abstaining from even a single slot reduces the expected aggregate profit; therefore, all

parties are incentivized to participate in all slots.

Lossy network. Second, we assume a lossy network (cf. Section 7.1.1). Theo-

rem 10 shows that Ouroboros with block proportional rewards is not compliant w.r.t.

the conflicting infraction predicate 𝒳𝑐𝑜𝑛𝑓 ; specifically, it shows that 𝜖 is upper-bounded
by a large value, which is typically non-negligible.

Theorem 10. Assume i) a lossy network with (non-negligible) parameter 𝑑 (cf. Sec-

tion 7.1.1), ii) the conflicting infraction predicate 𝒳𝑐𝑜𝑛𝑓 (cf. Definition 33), iii) that ∀𝒫′ ∈
ℙ ∶ 𝜇𝒫′ < 1

2 , and iv) that 𝒫 is the party with maximum ∑𝑗∈[1,𝑒] 𝜇𝒫,𝑗 over all parties.

Ouroboros with block-proportional rewards (cf. Definition 36, for fixed block reward 𝑅)

is not (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant (cf. Definition 32), w.r.t. utility Reward for any 𝜖 < 𝑑 ⋅ (1 −
𝑑)2 ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗, and is also not (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant, w.r.t. utility Profit for any

𝜖 < (𝑑 ⋅ (1−𝑑)3 ⋅𝑅 −𝐶) ⋅∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗.

Proof. To prove the statement we define the following event 𝐸 for party 𝒫, when all

parties follow Π and 𝑟 is a slot where 𝒫 is the leader. 𝒫 extends its adopted longest

chain 𝒞 with a new block ℬ. However, ℬ is dropped, i.e., it is not delivered to any party

𝒫′ ≠ 𝒫; this occurs with probability 𝑑, a parameter of the lossy network. Therefore,

the leader of slot 𝑟 + 1, who does not adopt ℬ, creates a different, “competing” block

ℬ′, which is not dropped (with probability 1− 𝑑), thus all parties, except 𝒫, adopt ℬ′.

Finally, on round 𝑟 +2, the slot leader 𝒫″ ≠ 𝒫 produces a block ℬ″ which extends ℬ′

and ℬ″ is not dropped, therefore all parties – including 𝒫 adopt, on round 𝑟 +3, the –
now longest – chain 𝒞||ℬ′||ℬ″. The probability that 𝐸 occurs is 𝑑 ⋅ (1 − 𝑑)2, which is

non-negligible. This follows from the fact that the probability that each block is dropped

is independent. So, the expected rewards of 𝒫 when everyone follows Π are at most

(1 − 𝑑 ⋅ (1 − 𝑑)2) ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗. However, as described above, the maximum

rewards are 𝑅 ⋅∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗, i.e., they are strictly larger.

Now, consider the following strategy 𝑆. When party 𝒫 is the slot leader, it creates

𝑡 messages, all extending its adopted longest chain; in other words, 𝒫 forks the chain

by producing 𝑡 competing blocks. Clearly, as long as at least one of the 𝑡 blocks is

delivered, event 𝐸 will not occur, the leader of slot 𝑟 + 1 will adopt one of the blocks

created by 𝒫 and, eventually, 𝒫 will receive the rewards that correspond to slot 𝑟.
The probability that all 𝑡 blocks are dropped is 𝑑𝑡, while the expected rewards are

Chapter 7. Blockchain Nash Dynamics 159

(1 − 𝑑𝑡 ⋅ (1 − 𝑑)2) ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗. As 𝑡 increases, this probability tends to 0 and

the party’s expected rewards tend to the maximum value 𝑅 ⋅∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗.

Therefore, for utility Reward, the profile 𝜎𝒫,𝑆, under which all parties except 𝒫
employΠ and𝒫 employs𝑆, is directly reachable (cf. Definition 31) from the “all honest”

profile 𝜎Π. Hence, since 𝑆 is non-compliant, so is Π, for values of 𝜖 <. 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅
𝜇𝒫,𝑗 −(1−𝑑 ⋅ (1−𝑑)2) ⋅𝑅 ⋅∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗 = 𝑑 ⋅ (1−𝑑)2 ⋅𝑅 ⋅∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗.

Regarding cost, we consider the party 𝒫 with the maximum power across the exe-

cution and the case when 𝑡 = 2, i.e., the simplest case of non-compliant deviation. The

expected rewards of 𝒫 are (1 − 𝑑2 ⋅ (1 − 𝑑)2) ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗, therefore its re-

ward increase (instead of employing Π) is ((1 − 𝑑2 ⋅ (1 − 𝑑)2) − (1 − 𝑑 ⋅ (1 − 𝑑)2)) ⋅ 𝑅 ⋅
∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗 = 𝑑 ⋅ (1 − 𝑑)3 ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗. Hence, given a cost 𝐶 per query,

if the aggregate cost for performing these extra queries to 𝒪Π is less than this gain, 𝒫 is

incentivized to deviate so.

The lossy network analysis is particularly of interest, because it manifested in prac-

tice. On December 2019, Cardano released its Incentivized Testnet (ITN)11. On the

ITN, Cardano stakeholders, i.e., users who owned Cardano’s currency, participated in

PoS by forming stake pools which produced blocks. The ITN used proportional re-

wards and the execution followed the Ouroboros model of epochs and slots. Specifi-

cally, each pool was elected as a slot leader proportionally to its stake and received its

proportional share of an epoch’s rewards based on its performance, i.e., the number of

produced blocks compared to the number of expected blocks it should have produced.

This incentivized pool operators to actively avoid abstaining, i.e., failing to produce a

block when elected as slot leader. However, forks started to form while the network

was unstable and lossy. This incentivized pools12 to “clone” their nodes, i.e., run mul-

tiple node instances in parallel, thus increasing network connectivity, reducing packet

loss, but also extending all possible forks. To make matters worse, this solution not

only perpetuated forks but also created new ones, as clones would not coordinate and

produced different blocks, even when extending the same chain.

Remark. Although a lossy network may render a PoS protocol non-compliant, the same

does not hold for PoW ledgers. As described in the proof of Theorem 10, a party produces

multiple blocks per slot to maximize the probability that one of them is eventually output by

Ω. Notably, since the PoS protocol restricts that at most one block extends the longest chain

11https://staking.cardano.org/
12For a (heated) discussion on this issue see Reddit: https://www.reddit.com/r/cardano/

comments/ekncza

https://staking.cardano.org/
https://www.reddit.com/r/cardano/comments/ekncza
https://www.reddit.com/r/cardano/comments/ekncza

Chapter 7. Blockchain Nash Dynamics 160

per slot, these blocks are necessarily conflicting. However, PoW ledgers do not enforce such

restriction; therefore, a party would instead create multiple consecutive (instead of parallel,

conflicting) blocks, as covered in the proof of Theorem 8, which yields maximal expected

rewards even under a lossy network.

7.5.2.2 Multi-Leader Proof-of-Stake

We now turn to Ouroboros Praos [DGKR18], the representative protocol of a family

that includes Ouroboros Genesis [BGK+18], Peercoin [KN12], and Tezos’ baking sys-

tem [Tez20]. These are similar to the previous PoS family (cf. Section 7.5.2.1), but with

one difference: it is possible that multiple parties are chosen as leaders for the same time

slot. As Theorem 11 shows, Ouroboros Praos and the other members of this family

are not compliant. The core argument of the proof is the same as with Ouroboros

under a lossy network (Theorem 10). Specifically, assuming a randomized message de-

livery, a party is incentivized to produce multiple blocks to decrease the probability that

a conflicting block, produced by a fellow slot leader, is adopted over their own. We

note that, neither Ouroboros nor Ouroboros Praos enforce a choice policy in case of

conflicting messages. However, parties typically utilize network delivery, opting for the

message that arrives first.

Theorem 11. Assume i) a synchronous network (cf. Section 7.1.1), ii) the conflicting

infraction predicate 𝒳𝑐𝑜𝑛𝑓 (Definition 33), iii) that ∀𝒫′ ∈ ℙ ∶ 𝜇𝒫′ < 1
2 , and iv) that 𝒫 is the

party with maximum ∑𝑗∈[1,𝑒] 𝜇𝒫,𝑗 over all parties.

Ouroboros Praos with block-proportional rewards (Definition 36, for fixed block reward

𝑅) is not (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant (Definition 32) w.r.t. utility Reward for (non-negligible) 𝜖 <
1
2𝑝𝑙 ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗, where 𝑝𝑙 is the (protocol-dependent) probability that 2 leaders

are elected for the same slot, and is not (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant w.r.t. utility Profit for any

𝜖 < (1
6𝑝𝑙 ⋅𝑅 −𝐶) ⋅∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗.

Proof. As with Theorem 10, we will define a bad event 𝐸, during which the expected

rewards of party 𝒫 are less if following Π, compared to a non-compliant strategy.

Let 𝑟 be a slot during which 𝒫 is leader. Additionally, a different party 𝒫′ is also

a leader of 𝑟. Both parties create two different messages and both set the network

priority to the maximum (cf. Section 7.1.1); we note that typically the protocol instructs

the parties to diffuse the messages as soon as possible, which is equivalent to setting

maximum priority. Following, the diffuse functionality delivers ℬ′ before ℬ, therefore

all parties (possibly except 𝒫) adopt ℬ′ and ignore ℬ.

Chapter 7. Blockchain Nash Dynamics 161

Let 𝑝𝐸 be the probability that 𝐸 occurs. First, 𝑝𝐸 depends on the probability 𝑝𝑙
that multiple leaders exist alongside 𝒫; 𝑝𝑙 depends on the protocol’s leader schedule

functionality, but should typically be non-negligible. Second, it depends on the order

delivery of ℬ,ℬ′; since both have the same priority and the delivery is randomized, (cf.

Section 7.1.1), the probability 𝑝𝑛 that ℬ′ is delivered before ℬ is 𝑝𝑛 = 1
2 . Therefore, it

holds 𝑝𝐸 = 𝑝𝑙 ⋅ 𝑝𝑛 = 1
2𝑝𝑙, which is non-negligible.

Additionally, if ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗 is the number of slots during which 𝒫 is leader, the

total expected rewards of 𝒫, when everybody (including 𝒫) follows Π, are at most

(1− 1
2𝑝𝑙) ⋅𝑅 ⋅∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗.

Now, consider the following (non-compliant) strategy, which is employed only by

𝒫. When 𝒫 is slot leader, it produces 𝑡 > 1 blocks, which it diffuses with maximum

priority. If every party 𝒫′ ≠ 𝒫 follows Π, the probability 𝑝𝑙 remains the same as be-

fore. Therefore, if 𝒫,𝒫′ are both leaders, the probability that the following slot’s leader

adopts the block of 𝒫′ is 1
𝑡+1 . So, the total expected rewards of 𝒫 under the new strat-

egy are (1 − 1
𝑡+1𝑝𝑙) ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗. Since 1

𝑡+1 < 1
2 , the new strategy profile is

directly reachable from the 𝜎Π, when every party follows Π. Additionally, as 𝑡 → ∞,

the expected rewards tend to the (maximum) value 𝑅 ⋅∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗.

Regarding Profit, for 𝑡 = 2 the increase in expected rewards is: ((1 − 1
3𝑝𝑙) − (1 −

1
2𝑝𝑙)) ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗 ⇒ 1

6𝑝𝑙 ⋅ 𝑅 ⋅ ∑𝑗∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑗, thus the bound for 𝜖 follows

with the same reasoning as Theorem 10.

7.6 Externalities

In this section, we enhance our analysis with parameters external to the distributed sys-

tem. First, we introduce an exchange rate, to model the rewards’ price in the same unit

of account as the cost. We analyze how the exchange rate should behave to ensure

compliance, assuming an external utility which is awarded for an infraction. Following,

we identify historical patterns to approximate this behavior and, finally, introduce penal-

ties, which disincentivize infraction when the exchange rate behavior does not suffice.

7.6.1 Utility under Externalities

In distributed ledger systems, rewards are denominated in the ledger’s native currency

(i.e., satoshi in Bitcoin, wei in Ethereum, etc). However, cost is typically denominated in

fiat (USD, GBP, etc). Therefore, we introduce an exchange rate, between the ledger’s

Chapter 7. Blockchain Nash Dynamics 162

native currency and USD, to denominate the rewards and cost in the same unit of ac-

count and precisely estimate a party’s utility.

The exchange rate 𝑋ℰ is a random variable, parameterized by a strategy profile

𝜎. For a trace ℑ𝜎 under 𝜎, the exchange rate takes a non-negative real value. The

exchange rate is applied once, at the end of the execution. Intuitively, this implies that

a party eventually sells their rewards at the end of the execution. Therefore, its utility

depends on the accumulated rewards, during the execution, and the exchange rate at

the end.

The infraction predicate expresses a deviant behavior that parties may exhibit. So

far, we considered distributed protocols in a standalone fashion, analyzing whether they

incentivize parties to avoid infractions. In reality, a ledger exists alongside other systems,

and a party’s utility may depend on parameters external to the distributed ledger. For

instance, double spending against Bitcoin is a common hazard, which does not increase

an attacker’s Bitcoin rewards, but awards them external rewards, e.g., goods that are

purchased with the double-spent coins.

The external – to the ledger – reward is modeled as a random variable 𝐵𝒫,ℰ𝜎
, which

takes non-negative integer values. Similarly to the rewards’ random variable, it is param-

eterized by a party 𝒫 and a strategy profile 𝜎. The infraction utility is applied once when
computing a party’s utility and has the property that, for every trace ℑ during which

a party 𝒫 performs no infraction, it holds that 𝐵𝒫,ℑ = 0. Therefore, a party receives
these external rewards only by performing an infraction.

Taking into account the exchange rate and the external infraction-based utility, we

now define a new utility. As with Definition 34, the new utility 𝑈 takes two forms,

Reward and Profit. For the former, 𝑈 normalizes the protocol rewards by applying the

exchange rate and adds the external, infraction rewards. For Profit, it also subtracts

the cost (which is already denominated in the base currency). Definition 37 defines the

utility under externalities. For ease of reading, we use the following notation:

• 𝜌𝒫,𝜎 = 𝐸[𝑅𝒫,ℰ𝜎
];

• 𝑥𝜎 = 𝐸[𝑋ℰ𝜎
];

• 𝑏𝒫,𝜎 = 𝐸[𝐵𝒫,ℰ𝜎
];

• 𝑐𝒫,𝜎 = 𝐸[𝐶𝒫,ℰ𝜎
].

Chapter 7. Blockchain Nash Dynamics 163

Definition 37. Let: i) 𝜎 be a strategy profile; ii) ℰ𝜎 be an execution under 𝜎; iii) 𝑥𝜎 be the

(expected) exchange rate of ℰ𝜎; iv) 𝑏𝒫,𝜎 be the (expected) external rewards of 𝒫 under 𝜎.
We define two types of utility 𝑈𝒫 of a party 𝒫 for 𝜎 under externalities:

1. Reward: 𝑈𝒫(𝜎) = 𝜌𝒫,𝜎 ⋅ 𝑥𝜎 +𝑏𝒫,𝜎

2. Profit: 𝑈𝒫(𝜎) = 𝜌𝒫,𝜎 ⋅ 𝑥𝜎 +𝑏𝒫,𝜎 −𝑐𝒫,𝜎

7.6.2 Compliance under Externalities

We now revisit our results, taking externalities into account. The core idea is to find

the relation between the assets’ price and external, infraction-based rewards, such that

the former counters the latter, hence parties are incentivized to remain compliant.

In systems that are compliant in the standalone setting, i.e., without considering

externalities, it suffices to show that the exchange rate is reduced to an extent which

counterbalances the external rewards. We consider two strategy profiles: i) 𝜎Π is the

profile under which all parties follow the protocol Π; ii) 𝜎𝑆𝒫
is the profile under which

all parties except 𝒫 follow Π, whereas 𝒫 deviates by following a non-compliant strategy

𝑆𝒫; for this deviation, 𝒫 receives external rewards 𝑏𝒫,𝜎𝑆𝒫
. Assume a system that is

(𝜖,𝒳)-compliant; under externalities, the system remains compliant, for the same 𝜖, as
long as it holds: ∀𝒫 ∀𝑆𝒫 ∶ (𝜌𝒫,𝜎𝑆𝒫

⋅𝑥𝜎𝑆𝒫
+𝑏𝒫,𝜎𝑆𝒫

)−(𝜌𝒫,𝜎Π
⋅𝑥𝜎Π

) < 𝜖. In some cases,

e.g., under fair rewards or in the synchronous setting of single-leader PoS (cf. Subsec-

tion 7.5.2.1), the expected rewards are equal under both profiles. In those cases, it

holds: 𝑏𝒫,𝜎𝑆𝒫
≤ 𝜌𝒫,𝜎Π

⋅ (𝑥𝜎Π
−𝑥𝜎𝑆𝒫

)+𝜖. Therefore, if the exchange rate is sufficiently
reduced, when 𝒫 performs an infraction, 𝒫 is incentivized to remain compliant. More

formally, Theorem 12 analyzes Ouroboros under a synchronous network and external-

ities; similar statements can be made for the positive results of Sections 7.4 and 7.5.1.

Theorem 12. Assume i) a synchronous network (cf. Section 7.1.1), ii) the conflicting

predicate 𝒳𝑐𝑜𝑛𝑓 , and iii) that ∀𝒫 ∈ ℙ ∶ 𝜇𝒫 < 1
2 . Also let: i) 𝕊−𝒳𝑐𝑜𝑛𝑓

: the set of all non

𝒳𝑐𝑜𝑛𝑓 -compliant strategies; ii) 𝑥𝜎Π
: the (expected) exchange rate under ℰ𝜎Π

; iii) 𝑥𝜎𝑆𝒫
:

the (expected) exchange rate when only 𝒫 employs some non 𝒳𝑐𝑜𝑛𝑓 -compliant strategy

𝑆𝒫; iv) 𝑏𝒫,𝜎𝑆𝒫
: the external utility that 𝑆𝒫 yields for 𝒫. Ouroboros with block-proportional

rewards (cf. Definition 36, for fixed block reward 𝑅) under the aforementioned externalities

is not (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant (cf. Definition 32) w.r.t. utility Reward (cf. Definition 34) and,

if 𝑅 > 𝐶 , it is also not (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant w.r.t. utility Profit, in both cases for some

𝜖 < max{max
𝒫∈ℙ

{ max
𝑆𝒫∈𝕊−𝒳𝑐𝑜𝑛𝑓

{𝜌𝒫,𝜎Π
⋅ (𝑥𝜎𝑆𝒫

−𝑥𝜎Π
)+𝑏𝒫,𝜎𝑆𝒫

}},0}.

Chapter 7. Blockchain Nash Dynamics 164

Proof. Following the same reasoning as Theorem 9, if a party 𝒫 deviates by only pro-

ducing conflicting messages, but does not abstain, its expected rewards are the same

as following the protocol; specifically, due to network synchronicity, after every round

when 𝒫 is leader, every other party adopts one of the blocks produced by 𝒫 (although

possibly not everybody adopts the same block), and, since all these blocks are part of

the (equally-long) longest chain (at that point), eventually one of these blocks will be

output in the chain of the observer. Consequently, it holds that 𝜌𝒫,𝜎𝑆𝒫
= 𝜌𝒫,𝜎Π

.

Second, the maximum additional utility that a party 𝒫 may receive by deviating from

the honest protocol via producing conflicting blocks is: max
𝑆𝒫∈𝕊−𝒳𝑐𝑜𝑛𝑓

{𝜌𝒫,𝜎Π
⋅ (𝑥𝜎𝑆𝒫

−

𝑥𝜎Π
) + 𝑏𝒫,𝜎𝑆𝒫

}. Therefore, if for at least one party this value is non-negligible, 𝜖 is

not small enough and so the protocol is not compliant.

In the above negative results, non-compliance arises in (a) systems that employ fair

rewards and (b) PoS systemswhere a party is incentivized to producemultiple conflicting

messages, i.e., under a lossy network or multiple leaders per slot.

Regarding (a), Section 7.4 shows that fair rewards ensure compliance under util-

ity Reward, but non-compliance regarding profit. Specifically, assuming a minimal par-

ticipation cost 𝐶⊥
𝒫 , we showed that, if 𝒫 abstains, they incur zero cost without any

reward reduction. To explore compliance of fair rewards under externalities, we con-

sider two strategy profiles 𝜎Π,𝜎𝑆𝒫
, as before. Notably, 𝑆𝒫 is the abstaining strategy

which, as shown in Section 7.4, maximizes utility in the standalone setting. For the two

profiles, the profit for 𝒫 becomes 𝜌𝒫,𝜎Π
⋅ 𝑥𝜎Π

− 𝑐𝒫,𝜎Π
and 𝜌𝒫,𝜎𝑆𝒫

⋅ 𝑥𝜎𝑆𝒫
+ 𝑏𝒫,𝜎𝑆𝒫

re-

spectively. Again, in both cases the party’s rewards are equal. Therefore, since it holds

that 𝐶⊥
𝒫 ≤ 𝑐𝒫,𝜎Π

, 𝒫 is incentivized to be (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant (for some 𝜖) if:

𝜌𝒫,𝜎𝑆𝒫
⋅ 𝑥𝜎𝑆𝒫

+𝑏𝒫,𝜎𝑆𝒫
≤ 𝜌𝒫,𝜎 ⋅ 𝑥𝜎Π

−𝑐𝒫,𝜎Π
+𝜖 ⇒

𝑐𝒫,𝜎Π
+𝑏𝒫,𝜎𝑆𝒫

≤ 𝜌𝒫,𝜎Π
⋅ (𝑥𝜎Π

−𝑥𝜎𝑆𝒫
)+𝜖 ⇒

𝐶⊥
𝒫 +𝑏𝒫,𝜎𝑆𝒫

≤ 𝜌𝒫,𝜎Π
⋅ (𝑥𝜎Π

−𝑥𝜎𝑆𝒫
)+𝜖 (7.8)

If the abstaining strategy yields no external rewards, as is typically the case, 𝑏𝒫,𝜎𝑆𝒫
= 0,

so the exchange rate needs to only counterbalance the minimal participation cost.

Regarding (b), we consider single-leader PoS under a lossy network, since the anal-

ysis is similar for multi-leader PoS. We again consider two strategy profiles 𝜎Π,𝜎𝑆𝒫
as

above. Now, under 𝜎𝑆𝒫
, 𝒫 produces 𝑘 blocks during each slot for which it is leader,

to increase the probability that at least one of them is output in the observer’s final

Chapter 7. Blockchain Nash Dynamics 165

chain. Also, for simplicity, we set 𝑏𝒫,𝜎𝑆𝒫
= 0. These PoS systems become (𝜖′,𝒳𝑐𝑜𝑛𝑓)-

compliant (for some 𝜖′) if:

𝜌𝒫,𝜎𝑆𝒫
⋅ 𝑥𝜎𝑆𝒫

≤ 𝜌𝒫,𝜎Π
⋅ 𝑥𝜎Π

+𝜖 ⇒

(1−𝑑𝑘 ⋅ (1−𝑑)2) ⋅𝑅𝑚𝑎𝑥 ⋅ 𝑥𝜎𝑆𝒫
≤ (1−𝑑 ⋅ (1−𝑑)2) ⋅𝑅𝑚𝑎𝑥 ⋅ 𝑥𝜎Π

+𝜖 ⇒

𝑥𝜎𝑆𝒫
≤ 1−𝑑 ⋅ (1−𝑑)2

1−𝑑𝑘 ⋅ (1−𝑑)2 ⋅ 𝑥𝜎Π
+𝜖′ (7.9)

where 𝑅𝑚𝑎𝑥 = 𝑅 ⋅∑𝑖∈[1,𝑒] 𝑙𝑒 ⋅ 𝜇𝒫,𝑖 and 𝑑,𝑅, 𝑙𝑒 are as in Subsection 7.5.2.2.

7.6.3 Attacks and Market Response

To estimate the exchange rate’s behavior vis-à-vis external infraction rewards, we turn

to historical data from the cryptocurrency market. Although no infractions of the type

considered in this work have been observed in deployed PoS systems, we extrapolate

data from similar attacks against PoW cryptocurrencies (Table 7.1).

In the considered attacks, the perpetrator 𝒜 performed double spending. Specifi-

cally, 𝒜 created a fork and two conflicting transactions, each of which is published on the

two chains of the fork, the main and the adversarial chain. The main chain’s transaction

is redeemed for external rewards, e.g., a payment in USD, while the adversarial chain’s

transaction simply transfers the assets between two accounts of 𝒜. Therefore, 𝒜 both

receives external rewards and retains its cryptocurrency rewards.

The adversarial chain contains a number of blocks created by 𝒜. After this chain

becomes longest and is adopted by the network, 𝒜 sells its block rewards for USD.

To evaluate the exchange rate at this point, we set the period between the launch of

the attack and the (presumable) selling of the block rewards to 5 days. This value de-

pends on various parameters. For instance, in Bitcoin, the rewards for a block ℬ can

be redeemed after a “coinbase maturity” period of 100 confirmations, i.e., after at least

100 blocks have been mined on top of ℬ (equiv. 17 hours).13 Furthermore, transac-

tions are typically not finalized immediately; for instance, most parties finalize a Bitcoin

transaction after 6 confirmations and an Ethereum transaction after 240 confirmations

(equiv. approximately 1 hour). Usually this restraint is tightened [Voe20] after an attack

is revealed.

To estimate the difference in rewards that an infraction effects, we use cryptocur-

rency prices from CoinMarketCap14. First, we obtain the price 𝑃𝐶 of each cryptocur-

13A Bitcoin block is created on expectation every 10 minutes.
14https://coinmarketcap.com/

https://coinmarketcap.com/

Chapter 7. Blockchain Nash Dynamics 166

rency 𝐶 5 days after the attack. Second, we compute the percentage difference 𝑝𝐵𝑇 𝐶
of Bitcoin’s price, between the end and the beginning of the 5 day period. The value

𝑃𝐶 ⋅ 𝑝𝐵𝑇 𝐶 expresses the expected price of the cryptocurrency, assuming no attack had

occurred.15 Next, we find the number of blocks 𝑏 created during the attack and the

reward 𝑅 per block. Therefore, the reward difference is computed as 𝑃𝐶 ⋅𝑝𝐵𝑇 𝐶 ⋅ 𝑏 ⋅𝑅.

As shown in [GKR20, DKT+20], this attack is optimal. Therefore, using the com-

putations in [Nak08a] and the reorganized blocks during each attack, we approximate

the necessary percentage of adversarial power to successfully mount the attack with at

least 0.5 probability.

System Date
External

Utility
Rewards

Reward

Difference

Attacker

Hash Rate %

Ethereum

Classic

5/1/19 [Nes19] $1.1M $12.410 $−2,646 0.48026

1/8/20 [Stu20a] $5.6M $84,059 $−11,806 0.4913

6/8/20 [Stu20b] $1.68M $91,715 $−5,761 0.4913

30/8/20 [Voe20] unknown $120,131 $−12,992 0.5

Horizen 8/6/18 [Zen18] $550,000 $5,756 $−752 0.461373

Vertcoin 2/12/18 [Nes18] $100,000 $3,978 $−879 0.487124

Bitcoin

Gold

16/5/18 [Osb18] $17.5M $11,447 $−1,404 0.441631

23/1/20 [Lov20] $72,000 $4,247 $814 0.43991

Feathercoin 1/6/13 [Max13a] $63,800 $1,203 $−95.73 0.48283

Litecoin

Cash
4/7/19 [Lov19] $5,511 $80.66 $−0.15 0.47167

Table 7.1: Double spending attacks and the market’s response to them. External utility

is estimated as the reward from double-spent transactions. To compute the reward

difference, we multiply the rewards from reorganized blocks with the exchange rate

difference, i.e., the asset’s price 5 days after the attack minus the expected price, if an

attack had not occurred (following Bitcoin’s price in the same period).

15Historically, the prices of Bitcoin and alternative cryptocurrencies are strongly correlated [L.18].

Chapter 7. Blockchain Nash Dynamics 167

7.6.4 Penalties

Table 7.1 shows that, historically, the attacks are profitable, so the market’s response

is insufficient to keep a party compliant. Interestingly, in many occasions the external

utility was so high that, even if the exchange rate became 0, it would exceed the amount

of lost rewards. Therefore, an additional form of utility reduction is necessary. In many

PoS systems, like Casper [BG17, BRLP19], Gasper [BHK+20], and Tezos [Tez20], this

decrease is implemented as penalties for misbehavior.

In detail, each party 𝒫 is required to lock an amount of assets in a deposit 𝑔𝒫. If 𝒫
violates a well-defined condition, its deposit is forfeited, along with its accumulated re-

wards. Typically, misbehavior is identified by a non-interactive proof of the misbehavior,

e.g., a signed malicious message.

Considering profiles 𝜎Π,𝜎𝑆𝒫
as before, 𝒫’s rewards take shape as follows. Under

𝜎Π, 𝒫 receives 𝜌𝒫,𝜎Π
, which are exchanged under rate 𝑥𝜎Π

; also, it retains its deposit

𝑔𝒫, which is exchanged under the same rate. Under 𝜎𝑆𝒫
, 𝒫 forfeits both its rewards

and deposit, but receives external utility 𝑏𝒫,𝜎𝑆𝒫
. Therefore, under penalties a party

is incentivized to be compliant if the forfeited deposit and rewards are larger than the

external utility (cf. Theorem 13).

Theorem 13. Assume i) a synchronous network (cf. Section 7.1.1), ii) the conflicting

predicate 𝒳𝑐𝑜𝑛𝑓 , and iii) that ∀𝒫 ∈ ℙ ∶ 𝜇𝒫 < 1
2 . Also let: i) 𝕊−𝒳𝑐𝑜𝑛𝑓

: the set of all

non-compliant strategies; ii) 𝑥𝜎Π
: the (expected) exchange rate under 𝜎Π; iii) 𝑥𝜎𝑆𝒫

: the

(expected) exchange rate when only 𝒫 employs some non-compliant conflicting strategy 𝑆𝒫;

iv) 𝑏𝒫,𝜎𝑆𝒫
: the external utility that 𝑆𝒫 yields for 𝒫. Finally, assume the block-proportional

rewards (cf. Definition 36 for fixed block reward 𝑅) for which it also holds:

∀ℑ ∀𝒫 ∈ ℙ ∶ 𝑅𝒫,ℑ = { 𝜚(𝒞Ω,ℑ,𝒫) ⋅ℛΩ,ℑ +𝑔𝒫, 𝒫 produces no conflicting blocks in ℑ
0, otherwise

for a protocol-specific deposit value 𝑔𝒫 with 𝜌𝒫,𝜎 = 𝐸[𝑅𝒫,ℰ𝜎
], i.e., the expected rewards of

𝒫 under profile 𝜎.
Ouroboros with the above rewards and under the aforementioned externalities is not

(𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant (cf. Definition 32) w.r.t. utility Reward (cf. Definition 34) and, if

𝑅 > 𝐶 , it is also not (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant w.r.t. utility Profit, in both cases for a bound

𝜖 < max
𝒫∈ℙ

{ max
𝑆𝒫∈𝕊−𝒳𝑐𝑜𝑛𝑓

{𝑏𝒫,𝜎𝑆𝒫
}}−𝜌𝒫,𝜎Π

⋅ 𝑥𝜎Π
−negl(𝜅).

Proof. When a party 𝒫 employs a non-compliant strategy 𝑆𝒫, it receives an exter-

nal utility 𝑏𝒫,𝜎𝑆𝒫
. Also, in that case, it produces conflicting blocks (due to the non-

compliance property of 𝑆𝒫). Therefore, by definition of the above block-proportional

Chapter 7. Blockchain Nash Dynamics 168

rewards, 𝑅𝒫,𝜎𝑆𝒫
= 0; in other words, when 𝒫 employs 𝑆𝒫 and produces conflicting

blocks, 𝒫 forfeits the protocol’s rewards (which include the original rewards plus the

deposit 𝑔𝒫). Therefore, when 𝒫 employs 𝑆𝒫 and all other parties employ Π, 𝒫’s utility

is 𝑈𝒫(𝜎𝑆𝒫
) = 𝑏𝒫,𝜎𝑆𝒫

(cf. Definition 37).

We also remind that (from the proof of Theorem 9), 𝒫 can bias the leader schedule

with some negligible probability 𝑛𝑒𝑔𝑙(𝜅), if it controls a minority of power.

Therefore, for any party 𝒫 and strategy 𝑆𝒫, 𝜎𝑆𝒫
is directly 𝜖-reachable from 𝜎Π if:

𝜌𝒫,𝜎Π
⋅ 𝑥𝜎Π

+negl(𝜅)+𝜖 < 𝑏𝒫,𝜎𝑆𝒫
⇔

𝜖 < 𝑏𝒫,𝜎𝑆𝒫
−𝜌𝒫,𝜎Π

⋅ 𝑥𝜎Π
−negl(𝜅)

Across all parties and all non-compliant strategies, the maximum such 𝜖 is:

𝜖 < max
𝒫∈ℙ

{ max
𝑆𝒫∈𝕊−𝒳𝑐𝑜𝑛𝑓

{𝑏𝒫,𝜎𝑆𝒫
}}−𝜌𝒫,𝜎Π

⋅ 𝑥𝜎Π
−negl(𝜅)

We note that, as shown in Theorem 9, Ouroboros with block proportional rewards

under a synchronous network is an equilibrium, i.e., the honest protocol yields the max-

imum rewards for each party compared to all other strategies. In the present setting,

the honest protocol again yields the maximum utility, compared to all other compliant

strategies. To prove this it suffices to observe that, if a party does not produce conflict-

ing blocks, its rewards are a linear function of the rewards of the setting of Theorem 9;

therefore, between compliant strategies, the honest protocol yields the maximum re-

wards (as shown in Theorem 9).

Therefore, the given bound of 𝜖 is bounded from below and, for 𝜖 less than this

bound, there exists a party 𝒫 that is incentivized to employ a (non-compliant) strategy

𝑆𝒫 and produce conflicting blocks, rendering Π not (𝜖,𝒳𝑐𝑜𝑛𝑓)-compliant.

An issue of both externality-based Theorems (12 and 13) is that 𝜖’s bound depends

on 𝑏𝒫,𝜎𝑆𝒫
. This bound may be high (i.e., non-negligible), but it does not depend on

protocol parameters, but instead depends on external (to the protocol) variables (e.g.,

the payoff of a double-spending attack). Therefore, it is outside of the control of the

protocol’s designer, who can only ensure that a protocol is secure by only assuming an

upper bound on this external payoff.

Intuitively though, 𝜖’s bound shows that attacks are prevented by two parameters.

First, the larger the deposit, the more attacks it protects against. For example, a deposit

of $10M would protect against all attacks of Table 7.1. However, large deposits also

shut off small parties, who do not own adequate assets. Therefore, a tradeoff exists

Chapter 7. Blockchain Nash Dynamics 169

in preventing double spending attacks and enabling widespread participation. Second,

the longer the duration of an attack, the more blocks an adversary needs to produce,

hence the larger the rewards that it forfeits. Typically, the attack duration depends

on the number of confirmations that the offended party, e.g., an exchange, enforces.

Therefore, enforcing different confirmation limits, based on a transaction’s value, would

both enable fast settlement for small transfers and protect large transactions.

Taking this observation into account, we briefly review users’ behavior, when run-

ning Ouroboros (cf. Section 7.5.2.1) under deposits and penalties. In an Ouroboros

execution, it is possible to identify the percentage of parties that actively participate

during each epoch, by observing the block density and the number of empty slots (i.e.,

when no block is diffused). Therefore, it is possible to estimate the level of infraction,

i.e., double-signing, that a party needs to perform to mount a double-spending attack,

and then enforce a transaction finalization rule to disincentivize such attacks.

Let 𝒫 be a user of an Ouroboros ledger. 𝒫 enforces a rule of 𝑘 confirmations,

i.e., finalizes a transaction after it is “buried” under 𝑘 blocks. Let 𝜏 be a transaction

published in a block on slot 𝑟, with value 𝑣𝜏 . After 𝑙 slots, 𝒫 sees that 𝜏 has been buried

under 𝑏 blocks, with 𝑏 = 𝑥 ⋅ 𝑙 for some 𝑥 > 0.5. Therefore, (1 − 𝑥) ⋅ 100% of slots are

– seemingly – empty. 𝒫 will (on expectation) confirm 𝜏 after 1
𝑥 ⋅ 𝑘 slots, i.e., when 𝑘

blocks are produced; of these, 1−𝑥
𝑥 ⋅ 𝑘 are empty.

Let 𝒜 be a party that wants to double-spend 𝜏 . 𝒜 should produce a private chain

with at least 𝑘 blocks. Of these, at most 1−𝑥
𝑥 ⋅ 𝑘 correspond to the respective empty

slots, while 𝑘 − 1−𝑥
𝑥 ⋅ 𝑘 = 2⋅𝑥−1

𝑥 ⋅ 𝑘 conflict with existing blocks, i.e., are evidence of

infraction.

Let 𝑑 be a deposit amount, which corresponds to a single slot. Thus, for a period of

𝑡 slots, the total deposited assets 𝐷 = 𝑡 ⋅𝑑 are distributed evenly across all slots. 𝒜 can

be penalized only for infraction blocks, i.e., for slots which showcase conflicting blocks.

In a range of 1
𝑥 ⋅ 𝑘 slots, infraction slots are 2⋅𝑥−1

𝑥 ⋅ 𝑘.
Therefore, 𝒜 forfeits at most 2⋅𝑥−1

𝑥 ⋅ 𝑘 ⋅𝑑 in deposit and 2⋅𝑥−1
𝑥 ⋅ 𝑘 ⋅𝑅 in rewards that

correspond to infraction blocks. Therefore, if 𝑣𝜏 > 2⋅𝑥−1
𝑥 ⋅ 𝑘 ⋅ (𝑑 +𝑅), 𝒜 can profitably

double-spend 𝜏 . Consequently, depending on the amount 𝑑 of deposit per slot, the

block reward 𝑅, and the rate (1 − 𝑥) of empty slots, for a transaction 𝜏 with value 𝑣𝜏 ,

𝒫 should set the confirmation window’s size to:

𝑘𝜏 > 𝑣𝜏
2⋅𝑥−1

𝑥 ⋅ (𝑑 +𝑅) (7.10)

Finally, the system should allow each participant to withdraw their deposit after

Chapter 7. Blockchain Nash Dynamics 170

some time. However, it should also enforce some time limit, to ensure that adequate

deposit exists to (possibly) enforce a penalty. Intuitively, a party 𝒫 should be able to

withdraw a deposit amount that corresponds to a slot 𝑟, only if no transaction exists,

such that 𝑟 is part of the window of size 𝑘 (with 𝑘 computed as above). In other words,

𝒫’s deposit should be enough to cover all slots, which 𝒫 has led and which are part of

the confirmations’ window of at least one non-finalized transaction.

Remark. Penalties are applicable, and indeed common, in PoS systems, like those men-

tioned above, but the same does not hold for PoW systems. In PoW protocols like Bitcoin,

the block producers are decoupled from the users of the system, thus it is often impossible

to identify which party produced each block. Naturally, the same is true for fully anonymous

protocols, both PoW [MGGR13, BCG+14] and PoS [GOT19, KKKZ19].

Chapter 8

Macroeconomic Principles

Chapter 7 investigated distributed ledger systems from a microeconomic perspective,

focusing on the incentives and strategic choices of individual parties. Nonetheless, if

such systems are to support real-world economies, a macroeconomic treatment is also

imperative. In this chapter, we provide some preliminary results on this line of research.

Section 8.1 explores the limitations in enforcing macroeconomic policies in dis-

tributed ledgers. Importantly, we show that, in decentralized anonymous systems, no

macroeconomic policy which redistributes wealth from the larger to the smaller parties

can be applied. Instead, the best one can hope for is a linear increase in each party’s

wealth, proportionally to their capital. To quantify how different systems fare in this re-

gard, we introduce the notion of “cryptocurrency egalitarianism”, a quantitative metric

that helps compare systems w.r.t. how much they favor wealthy investors.

Next, Section 8.2 explores how taxation could be enforced. Given the previous im-

possibility result, we assume the existence of a centralized taxation authority. Our goal

is to enable the authority to correctly identify the users’ assets, in order to enforce its

taxation policy, in a privacy-preserving and efficient manner. In that direction, we pro-

pose two schemes based on programmable money, i.e., currency which is transferable

as long as certain preconditions are met.

8.1 Cryptocurrency Egalitarianism

In almost all blockchain cryptocurrency systems, block generators are incentivized to

participate via block rewards, i.e., for each block they successfully produce and which is

subsequently adopted by all other participants. In many cryptocurrencies, the rewards

serve a dual purpose: incentivise the the miners/minters but also create and distribute

171

Chapter 8. Macroeconomic Principles 172

the underlying cryptocurrency to the system’s maintainers. These rewards follow vari-

ous schedules that are designed based on the macroeconomic desiderata envisioned by

the architects of the cryptocurrency. For example, the rate of coin production is halved

every 210,000 blocks in Bitcoin. Ethereum and Litecoin follow similar schedules. On

the contrary, Monero has a smooth emission schedule in which the rewards are gradu-

ally reduced at every new block generated. The question of what this schedule should

be can have significant impact on the variance of stake ownership after an execution

of a sufficient number of protocol rounds [FKO+19]. Taking this into account, in this

chapter we consider the block generators as investors and focus on the comparison of

the expected returns of investors with different purchasing power.

A central economic property that arises from this line of thought is cryptocurrency

egalitarianism (also “crypto-egalitarianism”). This property states that rewards should

be proportional to the invested capital. Therefore, wealthy investors should not be

disproportionately rewarded, but everybody should have equal opportunity to both

participate and earn rewards. Until now, the term crypto-egalitarianism has been left

undefined, although several cryptocurrencies claim to be more egalitarian than oth-

ers [VS13, McM13]. However, lacking a quantifiable metric, the discussion around egali-

tarianism remains ill-posed. The core contribution of this chapter is to put forth the first

concrete definition of egalitarianism, in a way which is generic, practically measurable,

and applicable to any cryptocurrency. Additionally, we show that wealth redistribution,

from the rich to the poor, is impossible in decentralized, anonymous (or pseudony-

mous) systems; thus, rewarding everybody proportionately to their capital is the best

achievable setting.

Related work. The macro and microeconomics of blockchain design have been

studied from several perspectives, but remain an active area of research with a number

of open questions. Egalitarianism in particular has been studied in PoW systems from

the perspective of memory-hard functions [ABP17, BK16]. These works operate under

the premise that memory hardness provides egalitarianism, in the sense that the cost of

one computational step is roughly the same irrespective of the underlying computational

platform (typically ASIC vs. generic). In this chapter we generalize this question, by ask-

ing whether computational power grows proportionally to capital invested, i.e., whether

larger wealth results disproportionately more rewards. Additionally, a notable work by

Fanti et al. [FKO+19] introduces the complementary notion of equitability. That work

studies the evolution of a system after a series of rounds, putting forth the property that

Chapter 8. Macroeconomic Principles 173

stake ownership remains in proportion before and after rewards have been awarded.

By studying the behavior of the returns’ variance under the randomness of executions,

they show that the distribution of capital follows a Pólya process. This chapter can be

seen as complementary to their results, by quantifying the expectation of rewards and

then studying the variance under the randomness of initial capital allocation. Therefore,

a cryptocurrency can be perfectly egalitarian and poorly equitable and vice versa; no-

tably, it is possible to obtain a cryptocurrency both egalitarian and equitable, by adopting

correctly parameterized PoS under a geometric reward function.

8.1.1 PoW vs. PoS

Before studying the egalitarianism of different cryptocurrency consensus mechanisms,

we consider the leader election process, to establish an understanding of the differences

in egalitarianism between the two models of PoW and PoS.

Proof-of-Work. The number of hash evaluations is one of the several critical param-

eters to consider when purchasing mining hardware. Other important parameters in-

clude the price of a mining unit, as well as its electricity consumption. Mining hardware is

divided in various tiers based on performance, namely CPU miners, GPU miners, FPGA

miners, and specialized ASIC miners [Tay13]. Although the pricing of such devices may

be similar, the hashing rate and, in turn, the Return on Investment, is highly depen-

dent on the hardware’s tier. For example, as of December 2018, the mining hardware

“Whatsminer M10” produced by the company “MicroBT” cost $1,022.00 per unit and

produces $0.104266 per hour of operation in net gains, i.e., average mined Bitcoins per

hour denominated in US dollars minus the electricity costs. On the other hand, the min-

ing hardware “8 Nano Pro”, produced by the company “ASICMiner”, cost $6,000.00
per unit, but produces $0.315327 per hour of operation in net gains, i.e., almost three

times the hourly net gains of its cheaper competitor. Thus, if one can afford to purchase

the more expensive hardware, each of their subsequent dollar invested in electricity

returns more mined coins.

It has long been folklore knowledge in the blockchain community that mining be-

comes more egalitarian by using a memory-hard PoW function. This intuition is correct,

the core reason being the difficulty to construct specialized hardware for memory-hard

functions. For example, no ASICs currently exist for Monero mining. Therefore, the

only way to scale mining operations is by purchasing more general purpose hardware.

Chapter 8. Macroeconomic Principles 174

However, since the mining hardware in this case varies little, both in terms of cost and

performance, scaling returns become proportional to investments.

In this chapter, we only analyze the scaling of the economics of mining with respect

to hardware. We also do not take into account basic costs such as shipping and the

availability of a basic machine to co-ordinate mining (such as a personal computer not

performing mining itself). A multitude of additional factors play important roles for min-

ing operations, such as space rental costs, machine cooling and maintenance costs, or

bulk electricity purchase. As is common in economies of scale, these relative costs are

reduced for large-scale operations, although they are similar for all PoW cryptocurren-

cies and thus do not affect relative comparisons between them. We also remark that

we analyze mining costs for small capital investments. If larger capital, e.g., above a few

million US dollars, is available, corporations can develop their own specialized hardware

and gain a competitive advantage by treating it as a trade secret [Tay13]. These details

make the comparison in favour of PoS more pronounced, as PoS operations do not incur

such types of costs and do not lend themselves to specialized mining hardware research.

Proof-of-Stake. PoS is often criticized for its lack of egalitarianism. The rationale is

that, in PoS, the more money one stakes, the more money one generates. Thus, “the

rich get richer”, which is precisely the opposite of egalitarianism. Additionally, in PoS

systems, the money owners could constitute a closed, rich club, refusing to share the

assets with any outsiders. In contrast, this argument claims, PoW is naturally egalitarian;

everyone is paid based not on the money they own, but on the computational power

they put to work. In this case, since computational power is a natural resource and

cannot be exclusively owned, a closed rich club cannot be formed. Although this argu-

ment seems agreeable at first, the results of this chapter contradict it. In fact, correctly

parameterized stake-based systems are much more egalitarian than work-based ones.1

It is instructive to dispel the above argument intuitively, before we support our posi-

tion with data. First, the argument that money can be exclusively owned, but computa-

tional power cannot, is rather misguided. Indeed, this may be true in the case of a pecu-

liar oligopoly, where a small faction of parties mutually agrees to never sell to outsiders,

despite external demand. However, in an open market, both money and computational

power can be freely purchased and, in fact, any non-negligible amount of computational

powermust be necessarily purchased that way. In this work, we assume an openmarket

1Variations of PoS, such as delegated PoS, may not be perfectly egalitarian, since the delegates, i.e.,
the leaders of the stake pools, typically earn extra profits for managing the stake pools [BKKS20].

Chapter 8. Macroeconomic Principles 175

for both mining hardware and financial capital, which allows open participation. There-

fore, given that both money and computational power are purchasable, we consider

the funds one invests, either in technology or in financial capital, in order to maximize

the returns from a cryptocurrency’s block generation mechanisms. The amount of cryp-

tocurrency generated by a given investment can be concretely measured and compared,

thus the question can now be analyzed quantitatively and answered concretely.

8.1.2 A Formal Model of Crypto-Egalitarianism

The core contribution of this chapter is a formal definition of an economic measure of

egalitarianism in cryptocurrencies.

Before we present our definition, let us first state the desiderata of such a definition.

First, we want to enable concrete measurements on cryptocurrencies, in a manner that

is quantitative and not vague. Thus far, egalitarianism claims have been rather informal,

failing to include exact data [VS13, McM13]. As such, different cryptocurrencies claim

egalitarianism over the others, without demonstrating the claims or provide conclusive

arguments. Second, an egalitarianism definitionmust measure the protocol maintenance

returns of smaller vs. larger investors. We thus desire a metric which extracts a smaller

value to indicate a lack of egalitarianism (e.g., when large wealth generates blocks dispro-

portionately faster than small wealth), or a larger value to indicate perfect egalitarianism

(i.e., when every invested dollar has exactly equal power in terms of cryptocurrency

generation).

The first step in establishing our crypto-egalitarianism definition is to define the egal-

itarian curve 𝑓 . The horizontal axis of this curve plots the financial capital, which is avail-
able for investment, denominated in a fiat currency (USD).2 The vertical axis plots the

Return On Investment (ROI), which measures the amount of cryptocurrency that is

created during the investment period and remains unspent at the end of it, given an

optimal allocation of the initial capital. We require that ROI is computed over freshly

generated cryptocurrency; thus, it must be newly-mined or minted, and not purchased

from existing investors. Finally, the curve is plotted with a fixed investment duration in

mind; naturally, curves of different cryptocurrencies can be compared only if they use

the same duration.

Definition 38 (Egalitarian curve). Given a cryptocurrency 𝑐 and the set of all possible in-

2Given that we explore a small investment duration, it makes little difference whether these are nom-
inal USD or real USD, as long as they are the same when applying comparisons.

Chapter 8. Macroeconomic Principles 176

vestment strategies 𝔹, we define the egalitarian curve 𝑓𝑐,𝑑 ∶ ℝ+ ⟶ ℝ+ of 𝑐 for an investment

period 𝑑 as:

𝑓𝑐,𝑑(𝑣) =
max
𝐵∈𝔹

𝐸[𝐵(𝑣)]−𝑣
𝑣 (8.1)

The value max
𝐵∈𝔹

𝐸[𝐵(𝑣)] identifies the maximum expectation of returns across all in-

vestment strategies 𝔹, i.e., the amount of returns which the optimal strategy ensures

for a given initial capital 𝑣. The blockchain execution is modeled as a random vari-

able, since returns vary by execution; specifically, the randomness of the execution

can affect returns, as a participant may be “lucky”, i.e., produce more blocks than ex-

pected [FKO+19].

We remark that we do allow strategies to reinvest capital. For instance, returns

earned from mining rewards can be reinvested in electricity costs for future mining.

Furthermore, for unit consistency, we assume the strategy 𝐵(𝑣) returns the freshly

generated coins denominated in the same units as the capital 𝑣. Second, we assume

participants act independently and follow the protocol according to its specifications.

Using our definition of the egalitarian curve, we now define (Definition 39) egalitari-

anism as a concrete number. Considering the initial capital 𝑣 as a random variable, which

follows a certain distribution𝒟, egalitarianism is the variance of the expected ROI, when

the capital is chosen from the given distribution.

Definition 39 (Egalitarianism). Given a cryptocurrency 𝑐 and its egalitarian curve 𝑓 , we
define the egalitarianism 𝑒 of 𝑐, for investment duration 𝑑 under initial capital distribution 𝒟,

as follows:

𝑒𝑐,𝑑,𝒟 = −Var𝑣←𝒟[𝑓𝑐,𝑑(𝑣)] (8.2)

The intuition behind this definition is that, to have egalitarianism, the ROI must re-

main the same across different capital investments. As such, any deviation from the

mean is non-egalitarian. Naturally, if a system’s egalitarianism is higher than another, we

say that the former is more egalitarian than the latter. Of course, to be accurate, such

comparisons must be made after fixing the parameters 𝑐 and 𝑑, as well as the initial cap-
ital distribution 𝒟. Fixing 𝒟 to be the uniform distribution between a minimum and a

maximum capital, the returns are the same for all initial capitals alike.

Based on the above, we can define the ideal egalitarian curve. First, as an inter-

esting thought experiment, we consider the egalitarian curve which is decreasing (and

is, arguably, the ideal curve). In this case, small investors would receive proportionally

Chapter 8. Macroeconomic Principles 177

more newly created cryptocurrencies for every dollar they invest, i.e., the system would

redistribute wealth from the rich to the poor. However, one can quickly see that, in de-

centralized cryptocurrencies where the identities of the participants are unknown, this

is impossible. Indeed, the fact that decentralized cryptocurrencies allow anonymous

generation of new identities [Dou02] allows a wealthy investor to split their capital into

smaller ones. Thus, if the curve were ever to have a negative slope, the sum of the

smaller splits of the rich investment would achieve a higher gain. By the definition of the

curve, which mandates that it depicts the ROI of an optimal investment, this would be a

contradiction. Corollary 3 makes this intuition more precise.

Corollary 3 (Sybil strategies). Fix a cryptocurrency 𝑐 and an investment period interval 𝑑.
Given capital 𝑣, for every natural number 𝑖 ∈ ℕ⋆, it holds that 𝑓𝑐,𝑑(𝑣) ≤ 𝑓𝑐,𝑑(𝑖 ⋅ 𝑣).

Proof. Weprove the statement by contradiction. Assume that, for some capital 𝑣, there
exists a natural number 𝑖 ∈ ℕ⋆ such that 𝑓𝑐,𝑑(𝑣) > 𝑓𝑐,𝑑(𝑖 ⋅ 𝑣). Also assume that, for

capital 𝑣, the optimal strategy is 𝐵′, so max
𝐵∈𝔹

𝔼[𝐵(𝑣)] = 𝔼[𝐵′(𝑣)]. For capital 𝑖 ⋅ 𝑣, there
exists a strategy 𝐵″, such that the capital is split into 𝑖 equally-sized parts, with the

strategy 𝐵′ applied on each part. Given that the execution of each such sub-strategy is

independent, the expected returns for 𝐵″ are:

𝔼[𝐵″(𝑖 ⋅ 𝑣)] = 𝑖 ⋅𝔼[𝐵′(𝑣)] = 𝑖 ⋅max
𝐵∈𝔹

𝔼[𝐵(𝑣)] (8.3)

Additionally, 𝐵″ is at best the optimal strategy, so:

max
𝐵∈𝔹

𝔼[𝐵(𝑖 ⋅ 𝑣)] ≥ 𝔼[𝐵″(𝑖 ⋅ 𝑣)]
(8.3)
==⇒ max

𝐵∈𝔹
𝔼[𝐵(𝑖 ⋅ 𝑣)] ≥ 𝑖 ⋅max

𝐵∈𝔹
𝔼[𝐵(𝑣)] (8.4)

However, it should also hold that:

𝑓𝑐,𝑑(𝑣) > 𝑓𝑐,𝑑(𝑖 ⋅ 𝑣) ⇒
max
𝐵∈𝔹

𝔼[𝐵(𝑣)]−𝑣
𝑣 >

max
𝐵∈𝔹

𝔼[𝐵(𝑖 ⋅ 𝑣)]− 𝑖 ⋅ 𝑣
𝑖 ⋅ 𝑣

(8.4)
==⇒

max
𝐵∈𝔹

𝔼[𝐵(𝑣)]−𝑣
𝑣 >

𝑖 ⋅max
𝐵∈𝔹

𝔼[𝐵(𝑣)]− 𝑖 ⋅ 𝑣
𝑖 ⋅ 𝑣 ⇒

max
𝐵∈𝔹

𝔼[𝐵(𝑣)]−𝑣
𝑣 >

max
𝐵∈𝔹

𝔼[𝐵(𝑣)]−𝑣
𝑣

which is impossible.

Corollary 3 shows that, in purely decentralized systems, a decreasing egalitarian

curve is impossible. Therefore, the next-best ideal curve is a constant one, where the

Chapter 8. Macroeconomic Principles 178

ROI is stable regardless of capital invested. Under this condition, the amount of freshly

generated cryptocurrency is exactly proportional to themoney invested. Consequently,

a cryptocurrency with an ideal egalitarian curve is perfectly egalitarian (Definition 40).

Definition 40 (Perfect egalitarianism). A cryptocurrency 𝑐 is perfectly egalitarian, for in-

vestment duration 𝑑 and initial capital distribution 𝒟, if 𝑒𝑐,𝑑,𝒟 = 0.

8.1.3 Discussion

In this chapter, in providing a concrete definition of crypto-egalitarianism, we enable

an evidence-based discussion to substitute folklore arguments. The first application of

this metric was provided in [KKNZ19], which compared some of the largest cryptocur-

rency systems to date. Using our model, the egalitarianism of four indicative PoW-

based cryptocurrencies (Bitcoin, Litecoin [Lee11], Ethereum [B+14,Woo14], andMon-

ero [VS13]) was measured. The assessed claims of these projects were found in agree-

ment with our data, thus presenting for the first time economic comparisons which

quantify them precisely. On the pure PoS side, it was shown that egalitarian behavior is

similar across all coins, independently of externalities such as hardware characteristics.

Therefore, it suffices to perform a case study of an indicative PoS protocol (in this case,

Ouroboros [KRDO17]). It was then shown that pure PoS coins can be perfectly egali-

tarian, contrary to their PoW counterparts. These results were very optimistic in terms

of usability of our metric, as they provide concrete figures which measure the egalitar-

ianism of several popular cryptocurrencies. The most unexpected result arised from

the comparison between the PoW and PoS mechanisms. Although blockchain folklore

argued in favour of PoW systems in terms of egalitarianism, these results show that, in

fact, it is PoS systems which are more egalitarian under our proposed model.

Another interesting property that arises from this work is the impossibility of wealth

redistribution in cryptocurrency systems. As shown in Corollary 3, in a purely decen-

tralized setting, where no real-world identity checks exist (and, arguably, cannot exist),

a wealthy participant can always pose as multiple poor users. Therefore, any attempt to

redistribute wealth from the rich to the poor, based on entirely technological tools and

without taking into account real-world social structures, seems doomed to fail. In con-

clusion, all decentralized cryptocurrencies are “rich get richer” schemes; the pertinent

question, which this chapter aimed at resolving, is how fast this takes place.

Chapter 8. Macroeconomic Principles 179

8.2 Tax Applications of Programmable Money

A tax gap [Gro18] is a difference between the reported and the real tax revenue, for a

given jurisdiction and period of time. Research estimated that the tax gap in the USA

was 16.4% of revenue owed [Ser16] between 2008-2010, the total loss throughout the

EU due to the tax gap to €151.5 billion in 2015 [MGS18], while 1
3 of taxpayers in the

UK under-report their earnings [Adv20] (albeit half of UK’s lost taxes are product of a

small, wealthy fraction of misbehaving taxpayers). Therefore, reducing the tax gaps can

significantly enhance the efforts of tax-collecting authorities.

Central bank digital currencies (CBDC) have also come to prominence in recent

years. In the past decade, distributed ledger-based financial systems, which were kick-

started with the creation of Bitcoin [Nak08a], were accompanied by the increasing digi-

talization of payments [BS11]. CBDCs are the culmination of these trends, enabling fast,

cheap, and safe transactions in fiat assets. Crucially though, although still mostly on a

research stage,3 CBDCs have caused great concerns on citizens regarding transaction

privacy [Ban21].

This chapter offers two mechanisms that facilitate tax auditing and the identification

of tax gaps in distributed ledger-based currency systems. The first is a wrapper around

a generic distributed ledger, which enables taxpayers to declare their assets directly

to the authorities, while undeclared assets are frozen. The second is a proof mecha-

nism that enables the sender of some assets to prove, in a privacy-preserving manner,

whether the transferred assets have been taxed. Both mechanisms are examples of

programmable money (also referred to as smart money [AHA17]), where currency is

programmed to be transferable under a suitable set of circumstances or its transfer has

specific implications.

Related work. Literature offers various works on auditing of distributed ledger-

based assets. A holistic approach is taken in zkLedger [NVV18], which combines a

permissioned ledger with zero-knowledge proofs to create a tamper-resistant, verifiable

ledger of transactions. PRCash [WKCC18] also employs a permissioned ledger and of-

fers a regulation mechanism that restricts the total amount of assets a user can receive

anonymously for a period of time. Also Garman et al. [GGM16] propose an anonymous

ledger, which can enforce specific transaction policies. Following, Section 8.2.2 aims at

offering a simpler design, which can be more easily integrated in existing pseudonymous

3https://cbdctracker.org [July 2021]

https://cbdctracker.org

Chapter 8. Macroeconomic Principles 180

distributed ledgers, compared to the aforementioned works. Another interesting re-

search thread considers proofs of solvency. The first such scheme for Bitcoin exchanges,

proposed by Maxwell [Wil14], leaks the total amount of both assets and liabilities of the

exchange; more importantly, it enables an attack that allows the exchange to hide as-

sets, as detailed by in Zeroledge [DSE], which also proposed a privacy-preserving system

that allows exchanges to prove properties about their holdings. Provisions [DBB+15]

is a zero-knowledge proof of solvency mechanism for Bitcoin exchanges, based on

Sigma protocols i.e., without the need to reveal the addresses or the amount of assets

that an exchange controls. Similarly, Agrawal et al. [AGM18] describe a proof of sol-

vency which achieves better performance compared to Provisions, although assuming a

trusted setup. The mechanism of Section 8.2.3 extends Provisions and is also applicable

to [AGM18].

8.2.1 Desiderata

In distributed ledger-based currency systems, a user 𝒰 manages their assets via ad-

dresses. Each address 𝛼 is associated with a key pair (vk,sk), such that the private

key sk is used to claim ownership of the assets, e.g., by signing special messages; typi-

cally 𝛼 = H(vk) for some hash function H. Each address 𝛼 is associated with a (public)

balance bal(𝛼) so, given a list [𝛼1,…,𝛼𝑛] of all addresses that 𝒰 controls, 𝒰’s total

assets are Θ = ∑𝑛
𝑖=1 bal(𝛼𝑖). Our goal will be to retain as much privacy as possible,

so Θ should be the only information that is leaked to 𝒯, without de-anonymization of

individual transaction data.

To showcase the limitations of current systems, consider the following example.

Assume that Alice tax evades, i.e., creates a secret, undeclared address 𝛼 and controls

some assets 𝜃 in it. Given the pseudonymous nature of the ledger, 𝛼 cannot be cor-

related with Alice, until she uses it. Following, Alice issues a transaction 𝜏 which sends

𝜃 assets from 𝛼 to Bob. If Bob suspects that Alice evaded taxation for these 𝜃 assets,

they might want to report her to the authorities for inspection. However, the complaint

should be accompanied by a proof that 𝛼 is controlled by Alice, i.e., a proof that Alice

knows the private key associated with 𝛼. This is necessary as 𝒯 needs to distinguish

between two scenarios: i) Alice controls 𝛼 and tax evades; ii) Bob is lying about Alice

owning 𝛼. In the first scenario, Bob does know that 𝛼 is controlled by Alice, but 𝜏 is not

sufficient to prove it. Instead, Bob needs a proof which can only be supplied by Alice,

e.g., a signature from Alice which acknowledges 𝜏 or 𝛼. However, if Alice tax evades,

Chapter 8. Macroeconomic Principles 181

naturally she would not create such incriminating proof.

It is important that we retain as many good features of existing ledger systems as

possible. The most notable such feature is transaction privacy, thus our work consid-

ers pseudonymous, Bitcoin-like levels of privacy, and minimizes the information leaked

to the authorities during a tax auditing. Another important aspect is the mechanism’s

performance. A fundamental ingredient of payment systems is the seamless transaction

experience, so it is important to allow users to transact at all times, while also avoiding

significant strain during taxation periods. Finally, our mechanisms aim to minimize the

amount of (additional) published data, since storage in distributed ledgers is particularly

costly.

In summary, the desiderata of our mechanisms are as follows:

• Tax gap identification and counterincentive: Tax evasion, i.e., failure of a user 𝒰
to declare the amount of assets they own, should be either detectable by a tax

authority 𝒯, with access to the ledger, or render the assets unusable.

• High level of privacy: 𝒯 should — at most — learn the total amount of assets

owned by each taxpayer at the end of a fiscal year; this information should be

leaked only to 𝒯 and no additional information should be leaked to any other

party, apart from the information already published on the ledger.

• Unobstructed operation: The introduction of a taxation mechanism should not re-

sult in any period during which the — tax compliant — users are prohibited from

transacting.

• Low performance overhead: The taxation mechanism should not introduce a major

performance overhead, in terms of computation and storage requirements from

the users and the taxation authority.

• Balanced load: The computation and storage overhead of taxation should be

spread over a period of time, rather than introduce performance spikes.

8.2.2 Tax Auditable Distributed Ledger

In this section we describe a ledger with a built-in tax auditing mechanism. Our design is

generic, such that existing ledgers can incorporate it with minimal changes in the under-

lying consensus protocol. An auditable ledger enforces a user 𝒰 to declare the amount

of assets they own to a taxation authority 𝒯, with failure to do so rendering the assets

Chapter 8. Macroeconomic Principles 182

unusable. We achieve this while leaking to 𝒯 only the total amount of assets that 𝒰
owns at a specific point in time, e.g., the end of a fiscal year. We note that we consider

only pseudonymous ledgers, so potentially de-anonymizable data may be published on

the ledger, e.g., addresses which may be linked to the user who controls them.

We assume that 𝒯 holds a list of all taxpayers and is identified by a key (sk𝒯,vk𝒯).
Also there exist taxation periods, which last for a pre-specified amount of time 𝑑. For
example, a taxation period may last 1 calendar year, at the end of which taxpayers need

to declare their assets to the authorities.

The core idea is that assets unaccounted for, at the end of the taxation period, are

frozen, until their owners declare them to the authority. Specifically, at the end of a

taxation period, all assets are frozen. To unfreeze an asset, a taxpayer 𝒰 declares it to

𝒯 as follows.

First, 𝒰 creates a new key pair (sk𝒰,vk𝒰) and the corresponding address 𝛼𝒰 and

sends 𝛼𝒰 to 𝒯 as part of a KYC process. Next, 𝒯 certifies 𝛼𝒰 by issuing the signature

𝜎 = Sign(𝛼𝒰,sk𝒯), which it gives to 𝒰. The tuple 𝛼𝑡
𝒰 = ⟨𝛼𝒰,𝜎⟩ is the certified address,

which is used by the user to transact with frozen assets. 𝒯 maintains a mapping of

taxpayers and certified addresses, i.e., for every taxpayer 𝒰 it holds a list 𝐴𝒰 of all

certified taxation addresses that 𝒰 requested.

A transaction 𝜏 = ⟨𝛼𝑠,𝛼𝑑,Θ⟩, which moves Θ frozen assets from an address 𝛼𝑠, is

valid only if 𝛼𝑑 = ⟨𝛼,𝜎⟩ ∧ Verify(𝛼,𝜎,vk𝒯) = 1. Consequently, miners accept transac-

tions that unfreeze assets only as long as said assets are transferred to a certified address.

Therefore, 𝒯 can compute the amount of 𝒰’s assets as Θ𝒰 ∶= ∑𝑛
𝑖=1 bal(𝛼𝒰[𝑖]), 𝑛 being

the total number of 𝒰’s certified addresses.

We note that the system can accommodate multiple taxation authorities from dif-

ferent countries. In that case, 𝒯 is a federation of authorities, each identified by a single

key. Each authority’s key is published on the ledger and a taxpayer can certify their

addresses and declare their assets to the respective authorities.

Naturally, this mechanism introduces some challenges. Although standard pay-to-

public-key-hash addresses are 25 bytes, certified addresses may be significantly larger,

due to the certification signature of 𝒯. For instance, ECDSA signatures in the DER

format result in 72 additional bytes, thus making certified addresses 99 bytes long. Nev-

ertheless, certified addresses are expected to be used only once, to declare the assets,

thus the overall storage cost should not be significant. Another important consideration

regards to the private state of the taxation authority; given the statute of limitations, 𝒯
might need to maintain its taxation private key and the mapping of certified addresses

Chapter 8. Macroeconomic Principles 183

for a significant period, possibly resulting in significant maintenance costs.

We showcase our design via an auditable variation of Bitcoin ledger, denoted as ℒ𝑡.

ℒ𝑡 is initially parameterized by the public key of the authority (sk𝒯,vk𝒯), which is part of
the ledger’s genesis block. During the execution, 𝒯 can update its key by simply signing

a new key vk′
𝒯 with sk𝒯 and publishing it on the ledger. A taxation period lasts 52560

blocks, i.e., roughly 1 calendar year, so block 52560 and its multiples are “tax-auditing”

blocks. When a tax-auditing block is issued, all assets on ℒ𝑡 which are controlled by

non-certified addresses are frozen. To transact with assets from a frozen address, a

user sends them to a certified address, as described above.

Freezing complicates the system in a number of ways. First, the liveness of a trans-

action [GKL15] may be affected. For instance, a transaction which spends from a non-

certified address will be rejected, if it is created before but published after a tax-auditing

block. We sidestep this issue by enabling users to use certified addresses before the

freezing period, hence the liveness guarantees of the ledger apply unconditionally on

certified addresses. Second, it is possible that multiple competing tax-auditing blocks

are created, e.g., multiple blocks which extend the tax-auditing block. Therefore, 𝒯
needs to pick one and certify it. Afterwards, this certified block cannot be reverted and

acts as a “checkpoint”.

We note that ℒ𝑡 covers the desiderata proposed in Section 8.2.1. Regarding pri-

vacy, although 𝒯 can de-anonymize the set of ℒ𝑡 users at a specific point in time, i.e.,

when the assets freeze, the users can employ standard Bitcoin addresses and transac-

tions outwith this period. Additionally, as with standard Bitcoin addresses, third parties

cannot obtain information regarding the identity of a certified address’s owner (as long

as the signature itself does not leak it). In terms of performance, a user can transact with

their assets effortlessly, as long as they use certified addresses to receive or unfreeze as-

sets around the taxation period. Importantly, users can certify their addresses ahead of

the freezing time, thus the additional load can be spread over a period of a few days or

weeks.

8.2.3 A Tax-Auditing Extension for Provisions

We now build a tax auditing mechanism for existing ledgers, which is based on Provi-

sions [DBB+15]. The goal of this mechanism is to enable all payment recipients to verify

whether the assets used by a sender ℰ in a transaction have been properly declared

to the authority 𝒯. This is achieved in two stages, first with an asset declaration stage

Chapter 8. Macroeconomic Principles 184

that involves 𝒯 and second with a payer address auditing protocol, which is created in

tandem with the transaction that pays a recipient, and after ℰ commits to owning the

assets. If ℰ fails to provide such proof, the implication is that ℰ performs tax evasion.

To build this proof mechanism we rely on Provisions [DBB+15], particularly its proof of

assets. Our scheme comprises of two simple protocols, which ℰ runs with the taxation

authority and their counter-party respectively. As we show, our protocols retain the

privacy guarantees of Provisions.

Provisions is a privacy-preserving auditing mechanism for Bitcoin exchanges. Using

Provisions a party can verify that a (cooperating) Bitcoin exchange is solvent, i.e., pos-

sesses enough assets to cover the liabilities towards its users. In order to achieve this,

Provisions defines three protocols: i) proof of assets, ii) proof of liabilities, and iii) proof

of solvency. The first protocol commits the exchange — in a zero-knowledge fashion

— to the total amount of assets it possesses. The second commits it to the liabilities to-

wards its clients, such that each client can verify that the exchange has included his/her

deposits in the collective proof. Finally, the proof of solvency proves that the exchange’s

assets are equal or surpass its liabilities. Our work is only concerned in the assets owned

by the exchange, thus we focus on the proof of assets. All proofs are considered un-

der a group 𝐺 of prime order 𝑞 with fixed public generators 𝑔,ℎ. The proof of assets

considers the following:

• PK = {𝑦1,…,𝑦𝑛}: the total (anonymity) set of public keys;

• 𝑠𝑖: a bit such that, if the exchange controls 𝑦𝑖, i.e., if it possesses the private key

of 𝑦𝑖, then 𝑠𝑖 = 1, otherwise 𝑠𝑖 = 0;

• bal(𝑦𝑖): the amount of assets that the address corresponding to 𝑦𝑖 controls;

• Θ = ∑𝑛
𝑖=1 𝑠𝑖 ⋅bal(𝑦𝑖): the amount of assets that the exchange controls;

• 𝑏𝑖 = 𝑔bal(𝑦𝑖): a biding (but not hiding) commitment to the balance of 𝑦𝑖.

The exchange publishes the Pedersen commitments [Ped92] for each 𝑠𝑖 ⋅bal(𝑦𝑖),𝑠𝑖:

𝑝𝑖 = 𝑏𝑠𝑖
𝑖 ⋅ ℎ𝑣𝑖 = 𝑔bal(𝑦𝑖)⋅𝑠𝑖 ⋅ ℎ𝑣𝑖 (8.5)

𝑙𝑖 = 𝑦𝑠𝑖
𝑖 ℎ𝑡𝑖 = 𝑔�̂�𝑖ℎ𝑡𝑖 (8.6)

where 𝑣𝑖, 𝑡𝑖 ∈ ℤ𝑞 are chosen at random, 𝑥𝑖 is the private key for 𝑦𝑖, and ̂𝑥𝑖 = 𝑥𝑖 ⋅ 𝑠𝑖.

Then, the exchange proves knowledge of values 𝑠𝑖,𝑣𝑖, 𝑡𝑖, ̂𝑥𝑖 for every 𝑖 ∈ [1,𝑛] via a

Σ-protocol, such that conditions (8.5), (8.6) are satisfied.

Chapter 8. Macroeconomic Principles 185

Asset Declaration. In our case, ℰ declares the total amount of assets it controls,

i.e., the value Θ, to 𝒯 who verifies that ℰ’s commitments correspond to Θ. We obtain

the condition 𝑍Θ = ∏𝑛
𝑖=1 𝑝𝑖 = 𝑔Θ ⋅ ℎ𝑣, where 𝑣 = ∑𝑛

𝑖=1 𝑣𝑖, is a (publicly computable)

Pedersen commitment to ℰ’s assets. Given that 𝒯 knows Θ, ℰ needs only to prove

knowledge of a value 𝑣, such that this condition is satisfied. This is done via the Schnorr
protocol [Sch90] of Figure 8.1, which guarantees privacy as described in Lemma 5.

Public data: 𝑔,ℎ,𝑍Θ = ∏𝑛
𝑖=1 𝑝𝑖

Verifier’s input from prover: Θ
Prover’s input: 𝑣 = ∑𝑛

𝑖=1 𝑣𝑖

1. The prover (ℰ) chooses 𝑟 $←− ℤ𝑞 and sends 𝜆 = ℎ𝑟 to the verifier (𝒯).

2. The verifier replies with a challenge 𝑐 $←− ℤ𝑞.

3. The prover responds with 𝜃 = 𝑟 +𝑐 ⋅ 𝑣.

4. The verifier accepts if ℎ𝜃 ?= 𝜆⋅ (𝑍Θ ⋅ 𝑔−Θ)𝑐.

Asset Declaration Protocol 𝒫𝑎𝑠𝑠𝑒𝑡

Figure 8.1: Tax-auditing between ℰ (prover) and 𝒯 (verifier).

Lemma 5. For public values 𝑔,ℎ and 𝑍Θ, the protocol 𝒫𝑎𝑠𝑠𝑒𝑡 is an honest-verifier zero-

knowledge argument of knowledge of quantity 𝑣 satisfying 𝑍Θ = ∏𝑛
𝑖=1 𝑝𝑖 = 𝑔Θ ⋅ ℎ𝑣 for

𝑖 ∈ [1,𝑛].

Payer Address Auditing. The second part of our taxation proof enables the tax

auditing of a specific address used by a payer ℰ whenever a payment is made to an

arbitrary user 𝒰. ℰ will prove two conditions to 𝒰: i) for some 𝑖 ∈ [1,𝑛], the public

key 𝑦𝑖 (which is published as part of the Provisions scheme) corresponds to the address

from which 𝒰 receives their assets; ii) the corresponding bit 𝑠𝑖 for 𝑦𝑖 in the commitment

condition (8.6) is 𝑠𝑖 = 1. The first condition can be easily proven by providing 𝒰 with

an index 𝑖, such that 𝒰 confirms that the address in question is equal to the hash of

𝑦𝑖. To prove the second condition, we observe that, for 𝑠𝑖 = 1, 𝑝𝑖 = 𝑔bal(𝑦𝑖)ℎ𝑣𝑖 and

𝑙𝑖 = 𝑦𝑖ℎ𝑡𝑖 . Therefore, ℰ needs only to prove knowledge of 𝑡𝑖 and 𝑣𝑖, such that this

statement is satisfied, which can be achieved via the Schnorr protocol of Figure 8.2, its

privacy properties formalized in Lemma 6.

Chapter 8. Macroeconomic Principles 186

Public data: ℎ, (𝑦𝑖, 𝑙𝑖),bal(𝑦𝑖) for 𝑖 ∈ [1,𝑛]
Verifier’s input from prover: 𝑖
Prover’s input: 𝑡𝑖

1. The prover (ℰ) chooses 𝑟1, 𝑟2
$←− ℤ𝑞 and sends 𝜆1 = ℎ𝑟1,𝜆2 = ℎ𝑟2 to the

verifier.

2. The verifier replies with a challenge 𝑐 $←− ℤ𝑞.

3. The prover responds with 𝜃1 = 𝑟1 +𝑐 ⋅ 𝑡𝑖, 𝜃2 = 𝑟2 +𝑐 ⋅𝑣𝑖.

4. The verifier accepts if ℎ𝜃1 ?= 𝜆1 ⋅ (𝑙𝑖 ⋅ 𝑦−1
𝑖)𝑐 and ℎ𝜃2 ?= 𝜆2 ⋅ (𝑝𝑖 ⋅ 𝑔−bal(𝑦𝑖))𝑐.

Address Verification Protocol 𝒫𝑎𝑑𝑑𝑟𝑒𝑠𝑠

Figure 8.2: Address verification between ℰ (prover) and a user 𝒰 (verifier).

Lemma 6. For public values 𝑔,ℎ and 𝑦𝑖, 𝑙𝑖,𝑝𝑖,bal(𝑦𝑖), the protocol 𝒫𝑎𝑑𝑑𝑟𝑒𝑠𝑠 is an honest-

verifier zero-knowledge argument of knowledge of quantities 𝑡𝑖,𝑣𝑖 satisfying 𝑙𝑖 = 𝑦𝑖ℎ𝑡𝑖 and

𝑝𝑖 = 𝑔bal(𝑦𝑖)ℎ𝑣𝑖 respectively.

Finally, both protocols can be turned into non-interactive zero-knowledge (NIZK)

proofs of knowledge, in the random oracle model, using the Fiat-Shamir transforma-

tion [FS87].

Chapter 9

Conclusion

The goal of this thesis was to expand the horizon of how to build secure and efficient

applications on top of distributed ledgers. This goal was approached via a series of re-

search works, each building on and expanding the existing literature, from and towards

multiple directions. Our research evolved around three axes: i) cryptography; ii) dis-

tributed systems; iii) game theory and economics.

On the cryptographic side, we both analyzed pre-existing protocols and proposed

constructions of our own. Specifically, in focusing on the security and safety of dis-

tributed ledger-based systems, we analyzed hardware wallets (Chapter 3), describing a

formal model to capture their necessary properties and evaluate real-world implemen-

tations. Following this, we proposed a holistic model of wallets for Proof-of-Stake-based

systems (Chapter 4). This line of work brought about a formal definition of a PoS wal-

let’s core, a novel security notion (address malleability), and a rigorous description of

incorporating the wallet’s core in a PoS distributed ledger system. Notably, our model

highlighted a number of disadvantages, perhaps most intesting of which is the tendency

for centralization around a few participants. After identifying this drawback, we devised

a collective stake pool protocol (Chapter 5), which enables a group of people to form a

coalition in a trustless manner and be as competitive as centrally-controlled participating

entities. Crucially, across the thesis, our security analyses employed simulation-based

proofs of security, striving to offer the highest level of guarantees possible.

On the systems’ side, we focused on improving the efficiency and scalability of dis-

tributed ledger-based systems. Motivated by the ever-growing (and eventually unsus-

tainable) amount of data published in existing distributed ledgers, we devised a frame-

work for improving transaction state efficiency (Chapter 6). Our framework is inspired

by similar techniques in traditional database systems and consists of multiple layers, each

187

Chapter 9. Conclusion 188

enabling incremental improvements towards minimizing a ledger’s state.

On the economics’ side, we analyzed distributed ledger systems first from a micro-

economic perspective. Chapters 5 and 6 offer high-level descriptions of incentivizing

users to behave honestly, when participating in collective stake pools and creating ef-

ficient transactions respectively. More importantly, Chapter 7 engages in a thorough

analysis of the Nash dynamics of blockchain-based financial systems and introduces the

notion of compliance. The results of our analysis highlight core differences between

PoW and PoS-based systems, formalized the necessity of penalizing misbehaving parties

in the latter, and showcased that the market does not often respond rationally, thus

cannot (on its own) offer protection against economic attacks.

Finally, Chapter 8 explored macroeconomic properties of distributed ledgers. Sec-

tion 8.1 introduced crypto-egalitarianism, a property that expresses the reward rate of

participants, with respect to their capital investment in the system. We offered a formal

definition of crypto-egalitarianism, which boils it down to a single number, enabling a

precise comparison, in contrast to existing ad hoc arguments. Crucially, our research

proved that wealth redistribution in favor of the poor is impossible in completely decen-

tralized systems; consequently, some level of central control is needed to enforce any

such policy in a democratically-mandated manner. Building on this necessity, Section 8.2

explored how to reduce tax gaps, thus helping a government to efficiently enforce its

intended tax policies via a distributed ledger-based monetary and payment system.

Future Work

Throughout this thesis, multiple research questions arose, paving the way for interest-

ing future directions. The model of Chapter 3 highlighted the need for the operator of

a hardware wallet to faithfully follow the prescribed protocol; future work could eval-

uate the error probability, identify the causes of mistakes, and propose techniques to

reduce such risk. Building on the results of Chapter 4, future work could explore ef-

ficient (i.e., short) non-malleable address schemes, as well as explore the implications

of incorporating higher levels of anonymity and privacy. The collective stake pool of

Chapter 5 currently requires closing and re-creating a pool, in order to update its pa-

rameters and add new members; a more efficient design could expand this scheme to

enable such changes in a dynamic manner. The analysis of Chapter 6 is focused on

UTxO-based ledgers and size (as a cost function); future research could propose an

adapted state efficiency framework, which incorporates account-based ledgers and ex-

Chapter 9. Conclusion 189

plores its behavior under varying cost models. In Chapter 7, we consider only two

infraction predicates and rewards that stem only from the system itself; future work

could explore alternative infraction predicates, e.g., to take into account selfish min-

ing, how reward transfers between parties may affect the compliance analysis, as well

as possible correlations between the exchange rate and protocol rewards, to produce

an analysis for settings closer to the real-world. The crypto-egalitarianism property of

Section 8.1 is defined over the, rather simplistic, economic model of Bitcoin (and its

disciples); further research is needed, both to evaluate various existing systems and

identify whether economies of scale in various parameters exacerbate the identified gap

between PoW and PoS. Finally, Section 8.2 offered a glimpse of how ledgers can solve

real-world problems that tax authorities face; further research could enable collabo-

ration between tax authorities of different countries, incorporate tax gap identification

mechanisms in anonymous ledgers, and offer incentives to motivate adoption, instead

of depending on law enforcement.

Epilogue

During the 4-odd years of working on this thesis, a chasm grew in me. On the one hand,

I devoted large amounts of time and energy in understanding, building, and fixing decen-

tralized ledgers. On the other hand, my initial interest in Bitcoin and cryptocurrencies

gradually turned to disillusionment and eventual distaste. Akin to an atheist monk, I

kept working day in day out on beautiful designs, which were used by ideologies that I

detested. I believe that this thesis manifests this internal conflict, with technical contri-

butions existing side by side with snarky comments.

Two questions emerged from this conflict. Are decentralized ledgers merely tools,

possibly usable in societally beneficial applications, instead of speculative financial prod-

ucts of late capitalism? Should intellectual work always serve a societal purpose, or is

science for science’s sake good enough? Neither question is new. The former is ex-

pressed with the classic parable, that a knife can be used both to slice bread and as a

murder instrument. The latter came to the spotlight during the 19th and 20th centuries
in science, due to nuclear power, and in art, with the emergence of aestheticism.

I don’t have an answer to either question. I don’t know if a definitive answer can

exist. Nonetheless, I do know that acknowledging these questions may lead to the same

consequences as acknowledging Camus’s absurd: revolt, freedom, and passion.1

1The Myth of Sisyphus, Albert Camus

Bibliography

[AAC+17] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof

Pietrzak, and Leonid Reyzin. Beyond hellman’s time-memory trade-offs

with applications to proofs of space. In Takagi and Peyrin [TP17], pages

357–379. doi:10.1007/978-3-319-70697-9_13.

[AAMMZ12] Julian Assange, Jacob Appelbaum, Andy Müller-Maguhn, and Jérémie

Zimmermann. Cypherpunks: Freedom and the Future of the Internet. OR

books New York, 2012.

[ABLZ18] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino.

A formal model of bitcoin transactions. In Meiklejohn and Sako [MS18],

pages 541–560. doi:10.1007/978-3-662-58387-6_29.

[ABP17] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs

and their cumulative memory complexity. In Jean-Sébastien Coron and

Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,

Part III, volume 10212 of Lecture Notes in Computer Science, pages 3–32,

Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

doi:10.1007/978-3-319-56617-7_1.

[ADN06] Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen. Simplified

threshold RSA with adaptive and proactive security. In Serge Vaude-

nay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004

of Lecture Notes in Computer Science, pages 593–611, St. Petersburg,

Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany. doi:
10.1007/11761679_35.

[Adv20] Arun Advani. Who does and doesn’t pay taxes? Fiscal Studies, 2020.

190

https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/11761679_35
https://doi.org/10.1007/11761679_35

Bibliography 191

[AGKK19] Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos

Kiayias. A formal treatment of hardware wallets. In Goldberg and Moore

[GM19], pages 426–445. doi:10.1007/978-3-030-32101-7_26.

[AGM18] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-

interactive zero-knowledge proofs for composite statements. In Ho-

vav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –

CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer Science,

pages 643–673, Santa Barbara, CA, USA, August 19–23, 2018. Springer,

Heidelberg, Germany. doi:10.1007/978-3-319-96878-0_22.

[AHA17] Michel Avital, Jonas Hedman, and Lars Albinsson. Smart money:

Blockchain-based customizable payments system. Dagstuhl Reports,

7(3):104–106, 2017.

[Alo17] JD Alois. Ethereum parity hack may impact eth 500.000 or 146 mil-

lion. https://www.crowdfundinsider.com/2017/11/124200-
ethereum-parity-hack-may-impact-eth-500000-146-
million/, 2017. [Online; accessed 1-Sep-2018].

[And15] Gavin Andresen. Utxo uh-oh..., 2015. http://gavinandresen.
ninja/utxo-uhoh.

[AW19] Nick Arnosti and S. Matthew Weinberg. Bitcoin: A natural oligopoly. In

Avrim Blum, editor, ITCS 2019: 10th Innovations in Theoretical Computer

Science Conference, volume 124, pages 5:1–5:1, San Diego, CA, USA,

January 10–12, 2019. LIPIcs. doi:10.4230/LIPIcs.ITCS.2019.5.

[B+14] Vitalik Buterin et al. A next-generation smart contract and decentralized

application platform. white paper, 2014.

[Bam14] Chris Bambery. A People’s History of Scotland. Verso Trade, 2014.

[Ban21] European Central Bank. Eurosystem report on the public consultation

on a digital euro, 2021. URL: https://www.ecb.europa.eu/pub/
pdf/other/Eurosystem_report_on_the_public_consultation_
on_a_digital_euro~539fa8cd8d.en.pdf.

[Bau04] William J Baumol. Welfare economics and the theory of the state. In The

encyclopedia of public choice, pages 937–940. Springer, 2004.

https://doi.org/10.1007/978-3-030-32101-7_26
https://doi.org/10.1007/978-3-319-96878-0_22
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
http://gavinandresen.ninja/utxo-uhoh
http://gavinandresen.ninja/utxo-uhoh
https://doi.org/10.4230/LIPIcs.ITCS.2019.5
https://www.ecb.europa.eu/pub/pdf/other/Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.en.pdf

Bibliography 192

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for ac-

cumulators with applications to IOPs and stateless blockchains. Cryptol-

ogy ePrint Archive, Report 2018/1188, 2018. https://eprint.iacr.
org/2018/1188.

[BBMS14] Rainer Böhme, Michael Brenner, Tyler Moore, and Matthew Smith, ed-

itors. FC 2014 Workshops, volume 8438 of Lecture Notes in Computer

Science, Christ Church, Barbados, March 7, 2014. Springer, Heidelberg,

Germany.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and AdamO’Neill. Deterministic and

efficiently searchable encryption. In Alfred Menezes, editor, Advances in

Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer

Science, pages 535–552, Santa Barbara, CA, USA, August 19–23, 2007.

Springer, Heidelberg, Germany. doi:10.1007/978-3-540-74143-5_
30.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,

Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized

anonymous payments from bitcoin. In 2014 IEEE Symposium on Security

and Privacy, pages 459–474, Berkeley, CA, USA, May 18–21, 2014. IEEE

Computer Society Press. doi:10.1109/SP.2014.36.

[BCJR15] Michael Brenner, Nicolas Christin, Benjamin Johnson, and Kurt Rohloff,

editors. FC 2015 Workshops, volume 8976 of Lecture Notes in Computer

Science, San Juan, Puerto Rico, January 30, 2015. Springer, Heidelberg,

Germany.

[BDWW14] Tobias Bamert, Christian Decker, RogerWattenhofer, and Samuel Wel-

ten. Bluewallet: The secure bitcoin wallet. In International Workshop on

Security and Trust Management, pages 65–80. Springer, 2014.

[Ben70] Jeremy Bentham. An introduction to the principles of morals and legisla-

tion (1789), ed. by j. H Burns and HLA Hart, London, 1970.

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv

preprint arXiv:1710.09437, 2017.

https://eprint.iacr.org/2018/1188
https://eprint.iacr.org/2018/1188
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1109/SP.2014.36

Bibliography 193

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell,

and Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake

blockchains with dynamic availability. In David Lie, Mohammad Man-

nan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018:

25th Conference on Computer and Communications Security, pages 913–

930, Toronto, ON, Canada, October 15–19, 2018. ACM Press. doi:
10.1145/3243734.3243848.

[BGM+18] Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and

Vassilis Zikas. But why does it work? A rational protocol design treat-

ment of bitcoin. In Nielsen and Rijmen [NR18], pages 34–65. doi:
10.1007/978-3-319-78375-8_2.

[BHK+20] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi

Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. Combin-

ing ghost and casper, 2020. arXiv:2003.03052.

[Bit15] Bitcoin. July 2015 flood attack, 2015. https://en.bitcoin.it/wiki/
July_2015_flood_attack.

[Bit20a] Bitcoin. Miner fees, 2020. https://en.bitcoin.it/wiki/Miner_
fees.

[Bit20b] Bitcoin. Protocol documentation, 2020. https://en.bitcoin.it/
wiki/Protocol_documentation.

[Bit21a] Bitinfocharts. Bitcoin avg. transaction fee historical chart, July

2021. https://bitinfocharts.com/comparison/bitcoin-
transactionfees.html.

[Bit21b] Bitinfocharts. Bitcoin rich list, July 2021. https://bitinfocharts.
com/top-100-richest-bitcoin-addresses.html.

[BK16] Alex Biryukov and Dmitry Khovratovich. Egalitarian computing. In Holz

and Savage [HS16], pages 315–326.

[BKKS18] Lars Brünjes, Aggelos Kiayias, Elias Koutsoupias, and Aikaterini-Panagiota

Stouka. Reward sharing schemes for stake pools. CoRR, abs/1807.11218,

2018. URL: http://arxiv.org/abs/1807.11218, arXiv:1807.
11218.

https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1007/978-3-319-78375-8_2
http://arxiv.org/abs/2003.03052
https://en.bitcoin.it/wiki/July_2015_flood_attack
https://en.bitcoin.it/wiki/July_2015_flood_attack
https://en.bitcoin.it/wiki/Miner_fees
https://en.bitcoin.it/wiki/Miner_fees
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
http://arxiv.org/abs/1807.11218
http://arxiv.org/abs/1807.11218
http://arxiv.org/abs/1807.11218

Bibliography 194

[BKKS20] Lars Brünjes, Aggelos Kiayias, Elias Koutsoupias, and Aikaterini-Panagiota

Stouka. Reward sharing schemes for stake pools. In IEEE European Sympo-

sium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11,

2020, pages 256–275. IEEE, 2020. doi:10.1109/EuroSP48549.2020.
00024.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signa-

ture scheme. In Michael J. Wiener, editor, Advances in Cryptology –

CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages

431–448, Santa Barbara, CA, USA, August 15–19, 1999. Springer, Hei-

delberg, Germany. doi:10.1007/3-540-48405-1_28.

[BMC+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,

Joshua A. Kroll, and Edward W. Felten. SoK: Research perspectives and

challenges for bitcoin and cryptocurrencies. In 2015 IEEE Symposium

on Security and Privacy, pages 104–121, San Jose, CA, USA, May 17–21,

2015. IEEE Computer Society Press. doi:10.1109/SP.2015.14.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.

Bitcoin as a transaction ledger: A composable treatment. In Katz and

Shacham [KS17], pages 324–356. doi:10.1007/978-3-319-63688-
7_11.

[BO15] Rainer Böhme and Tatsuaki Okamoto, editors. FC 2015: 19th Interna-

tional Conference on Financial Cryptography and Data Security, volume 8975

of Lecture Notes in Computer Science, San Juan, Puerto Rico, January 26–

30, 2015. Springer, Heidelberg, Germany.

[BRLP19] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and Georgios

Piliouras. Incentives in ethereum’s hybrid casper protocol. In IEEE Inter-

national Conference on Blockchain and Cryptocurrency, ICBC 2019, Seoul,

Korea (South), May 14-17, 2019, pages 236–244. IEEE, 2019. doi:
10.1109/BLOC.2019.8751241.

[BS11] Codruta Boar and Róbert Szemere. Payments go (even more) digital*,

2011. URL: https://www.bis.org/statistics/payment_stats/
commentary2011.htm.

https://doi.org/10.1109/EuroSP48549.2020.00024
https://doi.org/10.1109/EuroSP48549.2020.00024
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1109/BLOC.2019.8751241
https://doi.org/10.1109/BLOC.2019.8751241
https://www.bis.org/statistics/payment_stats/commentary2011.htm
https://www.bis.org/statistics/payment_stats/commentary2011.htm

Bibliography 195

[But14] Vitalik Buterin. On stake, 2014.

https://blog.ethereum.org/2014/07/05/stake/.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryp-

tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.

https://eprint.iacr.org/2000/067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for

cryptographic protocols. In 42nd Annual Symposium on Foundations of

Computer Science, pages 136–145, Las Vegas, NV, USA, October 14–

17, 2001. IEEE Computer Society Press. doi:10.1109/SFCS.2001.
959888.

[Can03] Ran Canetti. Universally composable signatures, certification and authen-

tication. Cryptology ePrint Archive, Report 2003/239, 2003. https:
//eprint.iacr.org/2003/239.

[Car] Cardano. Cardano. https://cardano.org/.

[CDK02] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems

- concepts and designs (3. ed.). International computer science series.

Addison-Wesley-Longman, 2002.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Uni-

versally composable security with global setup. In Salil P. Vadhan, ed-

itor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392

of Lecture Notes in Computer Science, pages 61–85, Amsterdam, The

Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany.

doi:10.1007/978-3-540-70936-7_4.

[CEV14] Nicolas T. Courtois, Pinar Emirdag, and Filippo Valsorda. Private key re-

covery combination attacks: On extreme fragility of popular bitcoin key

management, wallet and cold storage solutions in presence of poor RNG

events. Cryptology ePrint Archive, Report 2014/848, 2014. https:
//eprint.iacr.org/2014/848.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,

and Udi Peled. UC non-interactive, proactive, threshold ECDSA with

https://eprint.iacr.org/2000/067
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://cardano.org/
https://doi.org/10.1007/978-3-540-70936-7_4
https://eprint.iacr.org/2014/848
https://eprint.iacr.org/2014/848

Bibliography 196

identifiable aborts. In Ligatti et al. [LOKV20], pages 1769–1787. doi:
10.1145/3372297.3423367.

[CGL+17] Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian

Miers, and Pratyush Mishra. Decentralized anonymous micropayments.

In Coron and Nielsen [CN17], pages 609–642. doi:10.1007/978-3-
319-56614-6_21.

[CGMV18] Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. ALGO-

RAND AGREEMENT: Super fast and partition resilient byzantine agree-

ment. Cryptology ePrint Archive, Report 2018/377, 2018. https:
//eprint.iacr.org/2018/377.

[CJKR12] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues.

On the (limited) power of non-equivocation. In Darek Kowalski and

Alessandro Panconesi, editors, 31st ACM Symposium Annual on Princi-

ples of Distributed Computing, pages 301–308, Funchal, Madeira, Por-

tugal, July 16–18, 2012. Association for Computing Machinery. doi:
10.1145/2332432.2332490.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of

key exchange and secure channels. Cryptology ePrint Archive, Report

2002/059, 2002. https://eprint.iacr.org/2002/059.

[CKM19] Alexander Chepurnoy, Vasily Kharin, and Dmitry Meshkov. A systematic

approach to cryptocurrency fees. In Zohar et al. [ZET+19], pages 19–30.

doi:10.1007/978-3-662-58820-8_2.

[CKWN16] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind

Narayanan. On the instability of bitcoin without the block reward. In

Weippl et al. [WKK+16], pages 154–167. doi:10.1145/2976749.
2978408.

[CN17] Jean-Sébastien Coron and Jesper Buus Nielsen, editors. Advances in Cryp-

tology – EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in Com-

puter Science, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg,

Germany.

https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1007/978-3-319-56614-6_21
https://doi.org/10.1007/978-3-319-56614-6_21
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
https://doi.org/10.1145/2332432.2332490
https://doi.org/10.1145/2332432.2332490
https://eprint.iacr.org/2002/059
https://doi.org/10.1007/978-3-662-58820-8_2
https://doi.org/10.1145/2976749.2978408
https://doi.org/10.1145/2976749.2978408

Bibliography 197

[Com18] EOS Community. Eos.io technical white paper v2, 2018.

https://github.com/EOSIO/Documentation/blob/master/
TechnicalWhitePaper.md.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work.

In Nielsen and Rijmen [NR18], pages 451–467. doi:10.1007/978-3-
319-78375-8_15.

[CPR19] Xi Chen, Christos H. Papadimitriou, and Tim Roughgarden. An axiomatic

approach to block rewards. In Proceedings of the 1st ACM Conference on

Advances in Financial Technologies, AFT 2019, Zurich, Switzerland, October

21-23, 2019, pages 124–131. ACM, 2019. doi:10.1145/3318041.
3355470.

[CPZ18] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang.

Edrax: A cryptocurrency with stateless transaction validation. Cryptol-

ogy ePrint Archive, Report 2018/968, 2018. https://eprint.iacr.
org/2018/968.

[CS11] Steve Chien and Alistair Sinclair. Convergence to approximate nash equi-

libria in congestion games. Games Econ. Behav., 71(2):315–327, 2011.

doi:10.1016/j.geb.2009.05.004.

[CS14] Nicolas Christin and Reihaneh Safavi-Naini, editors. FC 2014: 18th In-

ternational Conference on Financial Cryptography and Data Security, vol-

ume 8437 of Lecture Notes in Computer Science, Christ Church, Barbados,

March 3–7, 2014. Springer, Heidelberg, Germany.

[Dam88] Ivan Damgård. Collision free hash functions and public key signature

schemes. In David Chaum and Wyn L. Price, editors, Advances in Cryp-

tology – EUROCRYPT’87, volume 304 of Lecture Notes in Computer Sci-

ence, pages 203–216, Amsterdam, The Netherlands, April 13–15, 1988.

Springer, Heidelberg, Germany. doi:10.1007/3-540-39118-5_19.

[DBB+15] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan

Boneh. Provisions: Privacy-preserving proofs of solvency for bitcoin ex-

changes. In Ray et al. [RLK15], pages 720–731. doi:10.1145/2810103.
2813674.

https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1145/3318041.3355470
https://doi.org/10.1145/3318041.3355470
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2018/968
https://doi.org/10.1016/j.geb.2009.05.004
https://doi.org/10.1007/3-540-39118-5_19
https://doi.org/10.1145/2810103.2813674
https://doi.org/10.1145/2810103.2813674

Bibliography 198

[DC18] Edsko de Vries Duncan Coutts. Formal specification for a cardano wallet

- an iohk technical report, 2018. https://cardanodocs.com/files/
formal-specification-of-the-cardano-wallet.pdf.

[DCKT19] S. Dos Santos, C. Chukwuocha, S. Kamali, and R. K. Thulasiram. An

efficient miner strategy for selecting cryptocurrency transactions. In 2019

IEEE International Conference on Blockchain (Blockchain), pages 116–123,

2019.

[DDL18] Bernardo David, Rafael Dowsley, and Mario Larangeira. Kaleidoscope:

An efficient poker protocol with payment distribution and penalty en-

forcement. In Meiklejohn and Sako [MS18], pages 500–519. doi:
10.1007/978-3-662-58387-6_27.

[DDL19] Bernardo David, Rafael Dowsley, and Mario Larangeira. ROYALE: A

framework for universally composable card games with financial rewards

and penalties enforcement. In Goldberg and Moore [GM19], pages 282–

300. doi:10.1007/978-3-030-32101-7_18.

[DDN03] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptog-

raphy. SIAM review, 45(4):727–784, 2003.

[dec19] decred.org. Decred—an autonomous digital currency, 2019. https:
//decred.org.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and

Krzysztof Pietrzak. Proofs of space. In Rosario Gennaro and Matthew

J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II,

volume 9216 of Lecture Notes in Computer Science, pages 585–605, Santa

Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

doi:10.1007/978-3-662-48000-7_29.

[DFL19] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of

deterministic wallets. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng

Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference

on Computer and Communications Security, pages 651–668. ACM Press,

November 11–15, 2019. doi:10.1145/3319535.3354236.

https://cardanodocs.com/files/formal-specification-of-the-cardano-wallet.pdf
https://cardanodocs.com/files/formal-specification-of-the-cardano-wallet.pdf
https://doi.org/10.1007/978-3-662-58387-6_27
https://doi.org/10.1007/978-3-662-58387-6_27
https://doi.org/10.1007/978-3-030-32101-7_18
https://decred.org
https://decred.org
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1145/3319535.3354236

Bibliography 199

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.

Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-

stake blockchain. In Nielsen and Rijmen [NR18], pages 66–98. doi:
10.1007/978-3-319-78375-8_3.

[Dig21] Digiconomist. Bitcoin energy consumption index, July 2021. https:
//digiconomist.net/bitcoin-energy-consumption.

[DKT+20] Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod

Viswanath, Xuechao Wang, and Ofer Zeitouni. Everything is a race and

nakamoto always wins. In Ligatti et al. [LOKV20], pages 859–878. doi:
10.1145/3372297.3417290.

[DN93] Cynthia Dwork andMoni Naor. Pricing via processing or combatting junk

mail. In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92,

volume 740 of Lecture Notes in Computer Science, pages 139–147, Santa

Barbara, CA, USA, August 16–20, 1993. Springer, Heidelberg, Germany.

doi:10.1007/3-540-48071-4_10.

[doc18] docdroid. Ledger receive address attack. https://www.docdroid.
net/Jug5LX3/ledger-receive-address-attack.pdf, 2018. [On-

line; accessed 19-Sep-2018].

[Dou02] John RDouceur. The sybil attack. In International workshop on peer-to-peer

systems, pages 251–260. Springer, 2002.

[DPNH17] Sergi Delgado-Segura, Cristina Pérez-Solà, Guillermo Navarro-Arribas,

and Jordi Herrera-Joancomartí. Analysis of the bitcoin UTXO set. Cryp-

tology ePrint Archive, Report 2017/1095, 2017. https://eprint.
iacr.org/2017/1095.

[DPNH19] Sergi Delgado-Segura, Cristina Pérez-Solà, Guillermo Navarro-Arribas,

and Jordi Herrera-Joancomartí. Analysis of the bitcoin UTXO set. In Zo-

har et al. [ZET+19], pages 78–91. doi:10.1007/978-3-662-58820-
8_6.

[DPS19] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly recon-

figurable consensus and applications to provably secure proof of stake.

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://doi.org/10.1145/3372297.3417290
https://doi.org/10.1145/3372297.3417290
https://doi.org/10.1007/3-540-48071-4_10
https://www.docdroid.net/Jug5LX3/ledger-receive-address-attack.pdf
https://www.docdroid.net/Jug5LX3/ledger-receive-address-attack.pdf
https://eprint.iacr.org/2017/1095
https://eprint.iacr.org/2017/1095
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-662-58820-8_6

Bibliography 200

In Goldberg and Moore [GM19], pages 23–41. doi:10.1007/978-3-
030-32101-7_2.

[Dry19] ThaddeusDryja. Utreexo: A dynamic hash-based accumulator optimized

for the bitcoin UTXO set. Cryptology ePrint Archive, Report 2019/611,

2019. https://eprint.iacr.org/2019/611.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for

byzantine agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[DSE] JackDoerner, Abhi Shelat, andDavid Evans. Zeroledge: Proving solvency

with privacy.

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast

and multicast algorithms: Taxonomy and survey. ACM Computing Surveys

(CSUR), 36(4):372–421, 2004.

[EGSVR16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.

Bitcoin-ng: A scalable blockchain protocol. In 13th {USENIX} symposium

on networked systems design and implementation ({NSDI} 16), pages 45–

59, 2016.

[EOB19] David Easley, Maureen O’Hara, and Soumya Basu. From mining to mar-

kets: The evolution of bitcoin transaction fees. Journal of Financial Eco-

nomics, 134(1):91–109, 2019.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is

vulnerable. In Christin and Safavi-Naini [CS14], pages 436–454. doi:
10.1007/978-3-662-45472-5_28.

[Eth18a] Ethereum. Glossary: Account nonce, 2018. https://github.com/
ethereum/wiki/wiki/Glossary.

[Eth18b] Ethereum. Proof of stake faqs, 2018. https://eth.wiki/en/
concepts/proof-of-stake-faqs.

[FKKP19] Amos Fiat, Anna Karlin, Elias Koutsoupias, and Christos H. Papadim-

itriou. Energy equilibria in proof-of-work mining. In Anna Karlin, Nicole

Immorlica, and Ramesh Johari, editors, Proceedings of the 2019 ACM Con-

ference on Economics and Computation, EC 2019, Phoenix, AZ, USA, June

https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://eprint.iacr.org/2019/611
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-45472-5_28
https://github.com/ethereum/wiki/wiki/Glossary
https://github.com/ethereum/wiki/wiki/Glossary
https://eth.wiki/en/concepts/proof-of-stake-faqs
https://eth.wiki/en/concepts/proof-of-stake-faqs

Bibliography 201

24-28, 2019, pages 489–502. ACM, 2019. doi:10.1145/3328526.
3329630.

[FKO+19] Giulia C. Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod

Viswanath, and Gerui Wang. Compounding of wealth in proof-of-

stake cryptocurrencies. In Goldberg and Moore [GM19], pages 42–61.

doi:10.1007/978-3-030-32101-7_3.

[FMJR20] Mehdi Fooladgar, Mohammad Hossein Manshaei, Murtuza Jadliwala, and

Mohammad Ashiqur Rahman. On incentive compatible role-based re-

ward distribution in algorand. In 50th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks, DSN 2020, Valencia, Spain,

June 29 - July 2, 2020, pages 452–463. IEEE, 2020. doi:10.1109/
DSN48063.2020.00059.

[Fou20] Algorand Foundation. Faqs, 2020. URL: https://algorand.
foundation/faq.

[FPT04] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The com-

plexity of pure nash equilibria. In László Babai, editor, Proceedings of the

36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June

13-16, 2004, pages 604–612. ACM, 2004. doi:10.1145/1007352.
1007445.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions

to identification and signature problems. In Andrew M. Odlyzko, edi-

tor, Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in

Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.

Springer, Heidelberg, Germany. doi:10.1007/3-540-47721-7_12.

[Fus19] Russ Fustino. Algorand atomic transfers, 2019. https://medium.com/
algorand/algorand-atomic-transfers-a405376aad44.

[FvW19] Ellie Frost and Aaron van Wirdum. Bitcoin’s growing utxo

problem and how utreexo can help solve it, 2019. https:
//bitcoinmagazine.com/articles/bitcoins-growing-utxo-
problem-and-how-utreexo-can-help-solve-it.

https://doi.org/10.1145/3328526.3329630
https://doi.org/10.1145/3328526.3329630
https://doi.org/10.1007/978-3-030-32101-7_3
https://doi.org/10.1109/DSN48063.2020.00059
https://doi.org/10.1109/DSN48063.2020.00059
https://algorand.foundation/faq
https://algorand.foundation/faq
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.1007/3-540-47721-7_12
https://medium.com/algorand/algorand-atomic-transfers-a405376aad44
https://medium.com/algorand/algorand-atomic-transfers-a405376aad44
https://bitcoinmagazine.com/articles/bitcoins-growing-utxo-problem-and-how-utreexo-can-help-solve-it
https://bitcoinmagazine.com/articles/bitcoins-growing-utxo-problem-and-how-utreexo-can-help-solve-it
https://bitcoinmagazine.com/articles/bitcoins-growing-utxo-problem-and-how-utreexo-can-help-solve-it

Bibliography 202

[GAK17] Andriana Gkaniatsou, Myrto Arapinis, and Aggelos Kiayias. Low-level

attacks in bitcoin wallets. In Phong Q. Nguyen and Jianying Zhou, editors,

ISC 2017: 20th International Conference on Information Security, volume

10599 of Lecture Notes in Computer Science, pages 233–253, Ho Chi Minh

City, Vietnam, November 22–24, 2017. Springer, Heidelberg, Germany.

[GBWM+04] Vipul Gupta, Simon Blake-Wilson, BodoMoeller, Chris Hawk, andNBol-

yard. Ecc cipher suites for tls, 2004.

[Ger17] David Gerard. Attack of the 50 foot blockchain: Bitcoin, blockchain,

Ethereum & smart contracts. David Gerard, 2017.

[GG20] Rosario Gennaro and Steven Goldfeder. One round threshold ECDSA

with identifiable abort. Cryptology ePrint Archive, Report 2020/540,

2020. https://eprint.iacr.org/2020/540.

[GGM16] Christina Garman, Matthew Green, and Ian Miers. Accountable pri-

vacy for decentralized anonymous payments. In Grossklags and Preneel

[GP16], pages 81–98.

[GHM+17a] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai

Zeldovich. Algorand: Scaling byzantine agreements for cryptocurren-

cies. In Proceedings of the 26th Symposium on Operating Systems Princi-

ples, Shanghai, China, October 28-31, 2017, pages 51–68. ACM, 2017.

doi:10.1145/3132747.3132757.

[GHM+17b] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai

Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.

Cryptology ePrint Archive, Report 2017/454, 2017. https://eprint.
iacr.org/2017/454.

[GK20a] Clemente Galdi and Vladimir Kolesnikov, editors. SCN 20: 12th Interna-

tional Conference on Security in Communication Networks, volume 12238 of

Lecture Notes in Computer Science, Amalfi, Italy, September 14–16, 2020.

Springer, Heidelberg, Germany.

[GK20b] Juan A. Garay and Aggelos Kiayias. SoK: A consensus taxonomy in the

blockchain era. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-

RSA 2020, volume 12006 of Lecture Notes in Computer Science, pages

https://eprint.iacr.org/2020/540
https://doi.org/10.1145/3132747.3132757
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454

Bibliography 203

284–318, San Francisco, CA, USA, February 24–28, 2020. Springer, Hei-

delberg, Germany. doi:10.1007/978-3-030-40186-3_13.

[GKKZ11] Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou.

Adaptively secure broadcast, revisited. In Cyril Gavoille and Pierre Fraig-

niaud, editors, 30th ACM Symposium Annual on Principles of Distributed

Computing, pages 179–186, San Jose, CA, USA, June 6–8, 2011. Associ-

ation for Computing Machinery. doi:10.1145/1993806.1993832.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin

backbone protocol: Analysis and applications. In Elisabeth Oswald

and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,

Part II, volume 9057 of Lecture Notes in Computer Science, pages 281–

310, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

doi:10.1007/978-3-662-46803-6_10.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-

bone protocol with chains of variable difficulty. In Katz and Shacham

[KS17], pages 291–323. doi:10.1007/978-3-319-63688-7_10.

[GKR20] Peter Gazi, Aggelos Kiayias, and Alexander Russell. Tight consistency

bounds for bitcoin. In Ligatti et al. [LOKV20], pages 819–838. doi:
10.1145/3372297.3423365.

[GKW+16] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis,

Hubert Ritzdorf, and Srdjan Capkun. On the security and performance

of proof of work blockchains. In Weippl et al. [WKK+16], pages 3–16.

doi:10.1145/2976749.2978341.

[GM19] Ian Goldberg and Tyler Moore, editors. FC 2019: 23rd International Con-

ference on Financial Cryptography and Data Security, volume 11598 of Lec-

ture Notes in Computer Science, Frigate Bay, St. Kitts and Nevis, Febru-

ary 18–22, 2019. Springer, Heidelberg, Germany.

[GMR84] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical”

solution to the signature problem (abstract) (impromptu talk). In G. R.

Blakley and David Chaum, editors, Advances in Cryptology – CRYPTO’84,

volume 196 of Lecture Notes in Computer Science, page 467, Santa Barbara,

CA, USA, August 19–23, 1984. Springer, Heidelberg, Germany.

https://doi.org/10.1007/978-3-030-40186-3_13
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1145/3372297.3423365
https://doi.org/10.1145/3372297.3423365
https://doi.org/10.1145/2976749.2978341

Bibliography 204

[GMS17] Miraje Gentilal, Paulo Martins, and Leonel Sousa. Trustzone-backed bit-

coin wallet. In Proceedings of the Fourth Workshop on Cryptography and

Security in Computing Systems, pages 25–28. ACM, 2017.

[Gol07] Oded Goldreich. Foundations of cryptography: volume 1, basic tools. Cam-

bridge university press, 2007.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2, basic applications.

Cambridge university press, 2009.

[Gol16] David Golumbia. The politics of Bitcoin: software as right-wing extremism.

U of Minnesota Press, 2016.

[Goo14] LMGoodman. Tezos—a self-amending crypto-ledger white paper, 2014.

[GOT19] Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. Proof-of-stake

protocols for privacy-aware blockchains. In Yuval Ishai and Vincent Ri-

jmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part I, vol-

ume 11476 of Lecture Notes in Computer Science, pages 690–719, Darm-

stadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-17653-2_23.

[GP16] Jens Grossklags and Bart Preneel, editors. FC 2016: 20th International

Conference on Financial Cryptography and Data Security, volume 9603

of Lecture Notes in Computer Science, Christ Church, Barbados, Febru-

ary 22–26, 2016. Springer, Heidelberg, Germany.

[Gre12] Andy Greenberg. This Machine Kills Secrets: HowWikiLeakers, Hacktivists,

and Cypherpunks Are Freeing the World’s Information. Random House,

2012.

[Gro18] FISCALIS Tax Gap Project Group. the concept of tax gaps.

report ii: Corporate income tax gap estimation methodologies,

2018. URL: https://op.europa.eu/en/publication-detail/-
/publication/a5da4716-e7c1-11e8-b690-01aa75ed71a1.

[GS15] Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wal-

lets that tolerate key leakage. In Böhme and Okamoto [BO15], pages

497–504. doi:10.1007/978-3-662-47854-7_31.

https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-17653-2_23
https://op.europa.eu/en/publication-detail/-/publication/a5da4716-e7c1-11e8-b690-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/a5da4716-e7c1-11e8-b690-01aa75ed71a1
https://doi.org/10.1007/978-3-662-47854-7_31

Bibliography 205

[GS20] John M Griffin and Amin Shams. Is bitcoin really untethered? The Journal

of Finance, 75(4):1913–1964, 2020.

[HDM+14] Danny Yuxing Huang, Hitesh Dharmdasani, Sarah Meiklejohn, Vacha

Dave, Chris Grier, Damon McCoy, Stefan Savage, Nicholas Weaver,

Alex C. Snoeren, and Kirill Levchenko. Botcoin: Monetizing stolen cycles.

In ISOC Network and Distributed System Security Symposium – NDSS 2014,

San Diego, CA, USA, February 23–26, 2014. The Internet Society.

[HKZG15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.

Eclipse attacks on bitcoin’s peer-to-peer network. In Jaeyeon Jung and

Thorsten Holz, editors, USENIX Security 2015: 24th USENIX Security

Symposium, pages 129–144,Washington, DC, USA, August 12–14, 2015.

USENIX Association.

[HLS+09] Hsu-Chun Hsiao, Yue-Hsun Lin, Ahren Studer, Cassandra Studer, King-

Hang Wang, Hiroaki Kikuchi, Adrian Perrig, Hung-Min Sun, and Bo-Yin

Yang. A study of user-friendly hash comparison schemes. In Computer

Security Applications Conference, 2009. ACSAC’09. Annual, pages 105–114.

IEEE, 2009.

[HS16] Thorsten Holz and Stefan Savage, editors. USENIX Security 2016: 25th

USENIX Security Symposium, Austin, TX, USA, August 10–12, 2016.

USENIX Association.

[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri

Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110

of Lecture Notes in Computer Science, pages 466–485, French Riviera,

May 30 – June 3, 2010. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-13190-5_24.

[IH19] Griffin Ichiba Hotchkiss. The 1.x files: The state of stateless ethereum,

2019. https://blog.ethereum.org/2019/12/30/eth1x-files-
state-of-stateless-ethereum.

[Ioa96] Yannis E. Ioannidis. Query optimization. ACM Comput. Surv., 28(1):121–

123, 1996. doi:10.1145/234313.234367.

https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-13190-5_24
https://blog.ethereum.org/2019/12/30/eth1x-files-state-of-stateless-ethereum
https://blog.ethereum.org/2019/12/30/eth1x-files-state-of-stateless-ethereum
https://doi.org/10.1145/234313.234367

Bibliography 206

[JJ99] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding pro-

tocols. In Secure information networks, pages 258–272. Springer, 1999.

[JLG+14] Benjamin Johnson, Aron Laszka, Jens Grossklags, Marie Vasek, and Tyler

Moore. Game-theoretic analysis of DDoS attacks against bitcoin mining

pools. In Böhme et al. [BBMS14], pages 72–86. doi:10.1007/978-3-
662-44774-1_6.

[JLG+19] Shuhao Jiang, Jiajun Li, Shijun Gong, Junchao Yan, Guihai Yan, Yi Sun,

and Xiaowei Li. Bzip: A compact data memory system for utxo-based

blockchains. In 2019 IEEE International Conference on Embedded Software

and Systems (ICESS), pages 1–8. IEEE, 2019.

[JMV01] Don Johnson, AlfredMenezes, and Scott Vanstone. The elliptic curve dig-

ital signature algorithm (ecdsa). International journal of information security,

1(1):36–63, 2001.

[KDF13] Joshua A. Kroll, Ian C. Davey, and Edward W. Felten. The economics of

bitcoin mining, or bitcoin in the presence of adversaries. In The Twelfth

Workshop on the Economics of Information Security (WEIS 2013), 2013.

[Kee18] Keepkey. Keepkey. https://keepkey.com/, 2018. [Online; accessed

1-Sep-2018].

[Kha21] Yogita Khatri. Seventy-five eth2 validators got slashed this week due to a

bug witnessed by staked, 2021. https://www.theblockcrypto.com/
post/93730/eth2-validators-slashed-staked-bug.

[KJG+16] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,

Linus Gasser, and Bryan Ford. Enhancing bitcoin security and perfor-

mance with strong consistency via collective signing. In Holz and Savage

[HS16], pages 279–296.

[KK20] Dimitris Karakostas and Aggelos Kiayias. Securing proof-of-work ledgers

via checkpointing. Cryptology ePrint Archive, Report 2020/173, 2020.

https://ia.cr/2020/173.

[KK21] Dimitris Karakostas and Aggelos Kiayias. Filling the tax gap via pro-

grammable money, 2021. arXiv:2107.12069.

https://doi.org/10.1007/978-3-662-44774-1_6
https://doi.org/10.1007/978-3-662-44774-1_6
https://keepkey.com/
https://www.theblockcrypto.com/post/93730/eth2-validators-slashed-staked-bug
https://www.theblockcrypto.com/post/93730/eth2-validators-slashed-staked-bug
https://ia.cr/2020/173
http://arxiv.org/abs/2107.12069

Bibliography 207

[KKK21a] Dimitris Karakostas, Nikos Karayannidis, and Aggelos Kiayias. Efficient

state management in distributed ledgers. IACR Cryptol. ePrint Arch.,

2021:183, 2021. URL: https://eprint.iacr.org/2021/183.

[KKK21b] T. Kerber, A. Kiayias, and M. Kohlweiss. Kachina - foundations

of private smart contracts. In 2021 2021 IEEE 34th Computer

Security Foundations Symposium (CSF), pages 47–62, Los Alamitos,

CA, USA, jun 2021. IEEE Computer Society. URL: https://doi.
ieeecomputersociety.org/10.1109/CSF51468.2021.00002,
doi:10.1109/CSF51468.2021.00002.

[KKKT16a] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tse-

lekounis. Blockchain mining games. In Proceedings of the 2016 ACM Con-

ference on Economics and Computation, pages 365–382. ACM, 2016.

[KKKT16b] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tse-

lekounis. Blockchainmining games. In Vincent Conitzer, Dirk Bergemann,

and Yiling Chen, editors, Proceedings of the 2016 ACM Conference on Eco-

nomics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28,

2016, pages 365–382. ACM, 2016. doi:10.1145/2940716.2940773.

[KKKZ19] Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas.

Ouroboros crypsinous: Privacy-preserving proof-of-stake. In 2019 IEEE

Symposium on Security and Privacy, pages 157–174, San Francisco, CA,

USA, May 19–23, 2019. IEEE Computer Society Press. doi:10.1109/
SP.2019.00063.

[KKL20] Dimitris Karakostas, Aggelos Kiayias, and Mario Larangeira. Account

management in proof of stake ledgers. In Galdi and Kolesnikov [GK20a],

pages 3–23. doi:10.1007/978-3-030-57990-6_1.

[KKL21] Dimitris Karakostas, Aggelos Kiayias, and Mario Larangeira. Conclave: A

collective stake pool protocol. IACR Cryptol. ePrint Arch., 2021:742, 2021.

URL: https://eprint.iacr.org/2021/742.

[KKNZ19] Dimitris Karakostas, Aggelos Kiayias, Christos Nasikas, and Dionysis Zin-

dros. Cryptocurrency egalitarianism: A quantitative approach. In Vin-

cent Danos, Maurice Herlihy, Maria Potop-Butucaru, Julien Prat, and

Sara Tucci Piergiovanni, editors, International Conference on Blockchain

https://eprint.iacr.org/2021/183
https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00002
https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00002
https://doi.org/10.1109/CSF51468.2021.00002
https://doi.org/10.1145/2940716.2940773
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1007/978-3-030-57990-6_1
https://eprint.iacr.org/2021/742

Bibliography 208

Economics, Security and Protocols, Tokenomics 2019, May 6-7, 2019, Paris,

France, volume 71 of OASIcs, pages 7:1–7:21. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2019. doi:10.4230/OASIcs.Tokenomics.
2019.7.

[KKZ22] Dimitris Karakostas, Aggelos Kiayias, and Thomas Zacharias. Blockchain

nash dynamics and the pursuit of compliance, 2022. arXiv:2201.
00858.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.

CRC press, 2020.

[Kle20] Naomi Klein. On fire: the (burning) case for a green new deal. Simon &

Schuster, 2020.

[KLOS19] Elias Koutsoupias, Philip Lazos, Foluso Ogunlana, and Paolo Serafino.

Blockchain mining games with pay forward. In Ling Liu, Ryen W. White,

Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates,

and Leila Zia, editors, The World Wide Web Conference, WWW 2019,

San Francisco, CA, USA, May 13-17, 2019, pages 917–927. ACM, 2019.

doi:10.1145/3308558.3313740.

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to

play decentralized poker. In Ray et al. [RLK15], pages 195–206. doi:
10.1145/2810103.2813712.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake. self-published paper, August, 19:1, 2012.

[KP15] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in

blockchain protocols. Cryptology ePrint Archive, Report 2015/1019,

2015. https://eprint.iacr.org/2015/1019.

[KR18] Aggelos Kiayias and Alexander Russell. Ouroboros-BFT: A simple byzan-

tine fault tolerant consensus protocol. Cryptology ePrint Archive, Report

2018/1049, 2018. https://eprint.iacr.org/2018/1049.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman

Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain

https://doi.org/10.4230/OASIcs.Tokenomics.2019.7
https://doi.org/10.4230/OASIcs.Tokenomics.2019.7
http://arxiv.org/abs/2201.00858
http://arxiv.org/abs/2201.00858
https://doi.org/10.1145/3308558.3313740
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2810103.2813712
https://eprint.iacr.org/2015/1019
https://eprint.iacr.org/2018/1049

Bibliography 209

protocol. In Katz and Shacham [KS17], pages 357–388. doi:10.1007/
978-3-319-63688-7_12.

[KS17] Jonathan Katz and Hovav Shacham, editors. Advances in Cryptology –

CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science,

Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Ger-

many.

[KS19] Aggelos Kiayias and Aikaterini-Panagiota Stouka. Coalition-safe equilibria

with virtual payoffs, 2019. arXiv:2001.00047.

[L.18] Kenny L. You don’t need a diversified crypto portfolio to spread risk:

Here’s why, 2018. https://towardsdatascience.com/bitcoin-
dominance-5a95f0f3319e.

[LABK17] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan

Karame. Securing proof-of-stake blockchain protocols. In Data Privacy

Management, Cryptocurrencies and Blockchain Technology, pages 297–315.

Springer, 2017.

[LBS+15] Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar,

and Jeffrey S. Rosenschein. Bitcoin mining pools: A cooperative game

theoretic analysis. In GerhardWeiss, Pinar Yolum, Rafael H. Bordini, and

Edith Elkind, editors, Proceedings of the 2015 International Conference on

Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey,

May 4-8, 2015, pages 919–927. ACM, 2015. URL: http://dl.acm.
org/citation.cfm?id=2773270.

[Led18] Ledger. Ledger user manual. https://support.ledgerwallet.com/
hc/en-us/articles/360009676633, 2018. [Online; accessed 1-Sep-

2018].

[Lee11] Charles Lee. Litecoin, 2011.

[Lev01] Steven Levy. Crypto: How the code rebels beat the government–saving

privacy in the digital age. Penguin, 2001.

[LJG15] Aron Laszka, Benjamin Johnson, and Jens Grossklags. When bitcoin min-

ing pools run dry - A game-theoretic analysis of the long-term impact of

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
http://arxiv.org/abs/2001.00047
https://towardsdatascience.com/bitcoin-dominance-5a95f0f3319e
https://towardsdatascience.com/bitcoin-dominance-5a95f0f3319e
http://dl.acm.org/citation.cfm?id=2773270
http://dl.acm.org/citation.cfm?id=2773270
https://support.ledgerwallet.com/hc/en-us/articles/360009676633
https://support.ledgerwallet.com/hc/en-us/articles/360009676633

Bibliography 210

attacks between mining pools. In Brenner et al. [BCJR15], pages 63–77.

doi:10.1007/978-3-662-48051-9_5.

[LKL+14] Il-Kwon Lim, Young-Hyuk Kim, Jae-Gwang Lee, Jae-Pil Lee, Hyun Nam-

Gung, and Jae-Kwang Lee. The analysis and countermeasures on security

breach of bitcoin. In International Conference on Computational Science and

Its Applications, pages 720–732. Springer, 2014.

[Llo33] William Forster Lloyd. Two lectures on the checks to population. JH Parker,

1833.

[LOKV20] Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors. ACM

CCS 2020: 27th Conference on Computer and Communications Security,

Virtual Event, USA, November 9–13, 2020. ACM Press.

[Lov19] James Lovejoy. Litecoin cash (lcc) was 51% attacked,

2019. https://gist.github.com/metalicjames/
82a49f8afa87334f929881e55ad4ffd7.

[Lov20] James Lovejoy. Bitcoin gold (btg) was 51% attacked,

2020. https://gist.github.com/metalicjames/
71321570a105940529e709651d0a9765.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-

erals problem. ACM Transactions on Programming Languages and Systems

(TOPLAS), 4(3):382–401, 1982.

[LTKS15] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demysti-

fying incentives in the consensus computer. In Ray et al. [RLK15], pages

706–719. doi:10.1145/2810103.2813659.

[LVTS17] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena. SmartPool:

Practical decentralized pooled mining. In Engin Kirda and Thomas Ris-

tenpart, editors, USENIX Security 2017: 26th USENIX Security Sympo-

sium, pages 1409–1426, Vancouver, BC, Canada, August 16–18, 2017.

USENIX Association.

[M+14] Gregory Maxwell et al. Deterministic wallets, 2014.

[Mac19] Fitzroy Maclean. Scotland: a concise history. Thames & Hudson, 2019.

https://doi.org/10.1007/978-3-662-48051-9_5
https://gist.github.com/metalicjames/82a49f8afa87334f929881e55ad4ffd7
https://gist.github.com/metalicjames/82a49f8afa87334f929881e55ad4ffd7
https://gist.github.com/metalicjames/71321570a105940529e709651d0a9765
https://gist.github.com/metalicjames/71321570a105940529e709651d0a9765
https://doi.org/10.1145/2810103.2813659

Bibliography 211

[Man11] Robert Manne. The cypherpunk revolutionary. MONTHLY, 65(March

2011):16–35, 2011.

[Mar] Julian Martinez. Understanding proof of stake: The nothing at stake

theory. https://medium.com/coinmonks/understanding-proof-
of-stake-the-nothing-at-stake-theory-1f0d71bc027.

[Max13a] Maxminer. Feathercoin’s 51% attack - double spending case study,

2013. https://maxminer.files.wordpress.com/2013/06/ftc_
51attack.pdf.

[Max13b] Greg Maxwell. Coinjoin: Bitcoin privacy for the real world,

2013. https://bitcointalk.org/index.php?topic=279249.
msg2983902#msg2983902.

[Max17] Greg Maxwell. A deep dive into bitcoin core v0.15, 2017.

http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-
28-deep-dive-bitcoin-core-v0.15/.

[MB15] Malte Möser and Rainer Böhme. Trends, tips, tolls: A longitudinal study

of bitcoin transaction fees. In Brenner et al. [BCJR15], pages 19–33. doi:
10.1007/978-3-662-48051-9_2.

[McC20] John C. McCallum. Historical memory prices 1957+, 2020.

https://en.bitcoin.it/wiki/Miner_fee://jcmit.net/
memoryprice.htm.

[McM13] Robert McMillan. Ex-googler gives the world a better bitcoin. WIRED,

Aug 2013. URL: https://www.wired.com/2013/08/litecoin/.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption

function. In Carl Pomerance, editor, Advances in Cryptology – CRYPTO’87,

volume 293 of Lecture Notes in Computer Science, pages 369–378, Santa

Barbara, CA, USA, August 16–20, 1988. Springer, Heidelberg, Germany.

doi:10.1007/3-540-48184-2_32.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zero-

coin: Anonymous distributed E-cash from Bitcoin. In 2013 IEEE Sympo-

sium on Security and Privacy, pages 397–411, Berkeley, CA, USA, May 19–

22, 2013. IEEE Computer Society Press. doi:10.1109/SP.2013.34.

https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://maxminer.files.wordpress.com/2013/06/ftc_51attack.pdf
https://maxminer.files.wordpress.com/2013/06/ftc_51attack.pdf
https://bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902
https://bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.1007/978-3-662-48051-9_2
https://en.bitcoin.it/wiki/Miner_fee://jcmit.net/memoryprice.htm
https://en.bitcoin.it/wiki/Miner_fee://jcmit.net/memoryprice.htm
https://www.wired.com/2013/08/litecoin/
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/SP.2013.34

Bibliography 212

[MGS18] R Murphy and A Guter-Sandu. Resources allocated to tackling the tax

gap: a comparative eu study. Working paper for Combating Financial Fraud

and Empowering Regulators (COFFERS) Horizon 2020 project, Novem-

ber(A), 2018.

[MN21] Katie Martin and Billy Nauman. Bitcoin’s growing energy problem: ’it’s

a dirty currency’, 2021. https://www.ft.com/content/1aecb2db-
8f61-427c-a413-3b929291c8ac.

[MO19] TalMoran and IlanOrlov. Simple proofs of space-time and rational proofs

of storage. In Alexandra Boldyreva and Daniele Micciancio, editors, Ad-

vances in Cryptology – CRYPTO 2019, Part I, volume 11692 of Lecture Notes

in Computer Science, pages 381–409, Santa Barbara, CA, USA, August 18–

22, 2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-
26948-7_14.

[MPSV99] Paz Morillo, Carles Padró, Germán Sáez, and Jorge Luis Villar. Weighted

threshold secret sharing schemes. Information processing letters,

70(5):211–216, 1999.

[MR21] Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance.

Cryptology ePrint Archive, Report 2021/671, 2021. https://eprint.
iacr.org/2021/671.

[MS18] Sarah Meiklejohn and Kazue Sako, editors. FC 2018: 22nd International

Conference on Financial Cryptography and Data Security, volume 10957 of

Lecture Notes in Computer Science, Nieuwpoort, Curaçao, February 26 –

March 2, 2018. Springer, Heidelberg, Germany.

[Nak08a] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,

2008.

[Nak08b] Satoshi Nakamoto. Bitcoin p2p e-cash paper, 2008. https:
//www.metzdowd.com/pipermail/cryptography/2008-
October/014810.html.

[NBF+16] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and

StevenGoldfeder. Bitcoin and cryptocurrency technologies: a comprehensive

introduction. Princeton University Press, 2016.

https://www.ft.com/content/1aecb2db-8f61-427c-a413-3b929291c8ac
https://www.ft.com/content/1aecb2db-8f61-427c-a413-3b929291c8ac
https://doi.org/10.1007/978-3-030-26948-7_14
https://doi.org/10.1007/978-3-030-26948-7_14
https://eprint.iacr.org/2021/671
https://eprint.iacr.org/2021/671
https://www.metzdowd.com/pipermail/cryptography/2008-October/014810.html
https://www.metzdowd.com/pipermail/cryptography/2008-October/014810.html
https://www.metzdowd.com/pipermail/cryptography/2008-October/014810.html

Bibliography 213

[NEO18] NEO. How to become a neo consensus node, 2018.

https://medium.com/neo-smart-economy/how-to-become-
a-consensus-node-27e5317722e6.

[Nes18] Mark Nesbitt. Vertcoin (vtc) was successfully 51% attacked, 2018.

https://medium.com/coinmonks/vertcoin-vtc-is-currently-
being-51-attacked-53ab633c08a4.

[Nes19] Mark Nesbitt. Deep chain reorganization detected on ethereum clas-

sic (etc), 2019. https://blog.coinbase.com/ethereum-classic-
etc-is-currently-being-51-attacked-33be13ce32de.

[Nic14] HouyNicolas. The economics of bitcoin transaction fees. SSRN Electronic

Journal, 02 2014. doi:10.2139/ssrn.2400519.

[NKMS15] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn

mining: Generalizing selfish mining and combining with an eclipse attack.

Cryptology ePrint Archive, Report 2015/796, 2015. https://eprint.
iacr.org/2015/796.

[NR18] Jesper Buus Nielsen and Vincent Rijmen, editors. Advances in Cryptology

– EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer

Science, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg,

Germany.

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algo-

rithmic game theory, 2007. Book available for free online, 2007.

[NVV18] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-

preserving auditing for distributed ledgers. In 15th {USENIX} Symposium

on Networked Systems Design and Implementation ({NSDI} 18), pages 65–

80, 2018.

[Osb18] Charlie Osborne. Bitcoin gold suffers double spend attacks, $17.5 mil-

lion lost, 2018. https://www.zdnet.com/article/bitcoin-gold-
hit-with-double-spend-attacks-18-million-lost/.

[Par16] Luke Parker. Bitcoin stealing malware evolves again. https:
//bravenewcoin.com/news/bitcoin-stealing-malware-
evolves-again/, 2016. [Online; accessed 1-Sep-2018].

https://medium.com/neo-smart-economy/how-to-become-a-consensus-node-27e5317722e6
https://medium.com/neo-smart-economy/how-to-become-a-consensus-node-27e5317722e6
https://medium.com/coinmonks/vertcoin-vtc-is-currently-being-51-attacked-53ab633c08a4
https://medium.com/coinmonks/vertcoin-vtc-is-currently-being-51-attacked-53ab633c08a4
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
https://doi.org/10.2139/ssrn.2400519
https://eprint.iacr.org/2015/796
https://eprint.iacr.org/2015/796
https://www.zdnet.com/article/bitcoin-gold-hit-with-double-spend-attacks-18-million-lost/
https://www.zdnet.com/article/bitcoin-gold-hit-with-double-spend-attacks-18-million-lost/
https://bravenewcoin.com/news/bitcoin-stealing-malware-evolves-again/
https://bravenewcoin.com/news/bitcoin-stealing-malware-evolves-again/
https://bravenewcoin.com/news/bitcoin-stealing-malware-evolves-again/

Bibliography 214

[PDNHJ18] Cristina Pérez-Solà, Sergi Delgado-Segura, Guillermo Navarro-Arribas,

and Jordi Herrera-Joancomart. Another coin bites the dust: An analysis

of dust in UTXO based cryptocurrencies. Cryptology ePrint Archive,

Report 2018/513, 2018. https://eprint.iacr.org/2018/513.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure

verifiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryp-

tology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science,

pages 129–140, Santa Barbara, CA, USA, August 11–15, 1992. Springer,

Heidelberg, Germany. doi:10.1007/3-540-46766-1_9.

[PKF+18] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joël Alwen,

and Krzysztof Pietrzak. SpaceMint: A cryptocurrency based on proofs of

space. In Meiklejohn and Sako [MS18], pages 480–499. doi:10.1007/
978-3-662-58387-6_26.

[PS17a] Rafael Pass and Elaine Shi. FruitChains: A fair blockchain. In Elad Michael

Schiller and Alexander A. Schwarzmann, editors, 36th ACM Symposium

Annual on Principles of Distributed Computing, pages 315–324,Washington,

DC, USA, July 25–27, 2017. Association for Computing Machinery. doi:
10.1145/3087801.3087809.

[PS17b] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Takagi

and Peyrin [TP17], pages 380–409. doi:10.1007/978-3-319-70697-
9_14.

[PSL80a] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement

in the presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[PSL80b] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reach-

ing agreement in the presence of faults. J. ACM, 27(2):228–234,

1980. URL: http://doi.acm.org/10.1145/322186.322188, doi:
10.1145/322186.322188.

[PSP+71] Vilfredo Pareto, Ann S Schwier, Alfred N Page, et al. Manual of political

economy. Macmillan London, 1971.

[PSs17] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain pro-

tocol in asynchronous networks. In Coron and Nielsen [CN17], pages

643–673. doi:10.1007/978-3-319-56614-6_22.

https://eprint.iacr.org/2018/513
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-662-58387-6_26
https://doi.org/10.1007/978-3-662-58387-6_26
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-319-70697-9_14
http://doi.acm.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1007/978-3-319-56614-6_22

Bibliography 215

[PvW08] Wouter Penard and Tim vanWerkhoven. On the secure hash algorithm

family. Cryptography in Context, pages 1–18, 2008.

[Riz15] Peter R Rizun. A transaction fee market exists without a block size limit,

2015.

[RL11] Derek D. Reed and James K. Luiselli. Temporal Discounting, pages 1474–

1474. Springer US, Boston, MA, 2011. doi:10.1007/978-0-387-
79061-9_3162.

[RLK15] Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors. ACM CCS

2015: 22nd Conference on Computer and Communications Security, Den-

ver, CO, USA, October 12–16, 2015. ACM Press.

[Ros73] R. W. Rosenthal. A class of games possessing pure-strategy nash equilib-

ria. International Journal of Game Theory, 2:65–67, 1973.

[Rou16] Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge

University Press, 2016.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart

cards. In Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89,

volume 435 of Lecture Notes in Computer Science, pages 239–252, Santa

Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

doi:10.1007/0-387-34805-0_22.

[Ser16] Internal Revenue Service. Federal tax compliance research: Tax gap es-

timates for tax years 2008–2010, 2016.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for

Computing Machinery, 22(11):612–613, November 1979.

[SJ93] Philip D Straffin Jr. Game theory and strategy, volume 36. MAA, 1993.

[SL17] Fabian Schuh and Daniel Larimer. Bitshares 2.0: General overview, 2017.

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal self-

ish mining strategies in bitcoin. In Grossklags and Preneel [GP16], pages

515–532.

https://doi.org/10.1007/978-0-387-79061-9_3162
https://doi.org/10.1007/978-0-387-79061-9_3162
https://doi.org/10.1007/0-387-34805-0_22

Bibliography 216

[Ste18] Steem. Steem whitepaper, 2018. https://steem.com/steem-
whitepaper.pdf.

[Stu20a] Aleksey Studnev. Attacker stole 807k etc in ethereum classic 51% at-

tack, 2020. https://bitquery.io/blog/attacker-stole-807k-
etc-in-ethereum-classic-51-attack.

[Stu20b] Aleksey Studnev. Ethereum classic attack, 8 august: Catch me if you can,

2020. https://bitquery.io/blog/ethereum-classic-attack-
8-august-catch-me-if-you-can.

[Tay13] Michael Bedford Taylor. Bitcoin and the age of bespoke silicon. In Pro-

ceedings of the 2013 International Conference on Compilers, Architectures

and Synthesis for Embedded Systems, page 16. IEEE Press, 2013.

[TBB+17] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy

Thomas, and Blase Ur. Can unicorns help users compare crypto key

fingerprints? In Proceedings of the 2017 CHI Conference on Human Factors

in Computing Systems, pages 3787–3798. ACM, 2017.

[Tez20] Tezos. Proof-of-stake in tezos, 2020. URL: https://tezos.gitlab.
io/whitedoc/proof_of_stake.html.

[Tod16] Peter Todd. Making utxo set growth irrelevant with low-latency delayed

txo commitments, 2016. https://petertodd.org/2016/delayed-
txo-commitments.

[TP17] Tsuyoshi Takagi and Thomas Peyrin, editors. Advances in Cryptology –

ASIACRYPT 2017, Part II, volume 10625 of Lecture Notes in Computer Sci-

ence, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg,

Germany.

[Tre18a] Trezor. Trezor. https://trezor.io/, 2018. [Online; accessed 1-Sep-

2018].

[Tre18b] Trezor. Trezor developer’s guide. https://wiki.trezor.io/
Developers_guide, 2018. [Online; accessed 1-Sep-2018].

[Tre18c] Trezor. Trezor user manual. https://wiki.trezor.io/User_
manual, 2018. [Online; accessed 1-Sep-2018].

https://steem.com/steem-whitepaper.pdf
https://steem.com/steem-whitepaper.pdf
https://bitquery.io/blog/attacker-stole-807k-etc-in-ethereum-classic-51-attack
https://bitquery.io/blog/attacker-stole-807k-etc-in-ethereum-classic-51-attack
https://bitquery.io/blog/ethereum-classic-attack-8-august-catch-me-if-you-can
https://bitquery.io/blog/ethereum-classic-attack-8-august-catch-me-if-you-can
https://tezos.gitlab.io/whitedoc/proof_of_stake.html
https://tezos.gitlab.io/whitedoc/proof_of_stake.html
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments
https://trezor.io/
https://wiki.trezor.io/Developers_guide
https://wiki.trezor.io/Developers_guide
https://wiki.trezor.io/User_manual
https://wiki.trezor.io/User_manual

Bibliography 217

[Tur37] Alan Mathison Turing. On computable numbers, with an application to

the entscheidungsproblem. Proceedings of the London mathematical soci-

ety, 2(1):230–265, 1937.

[UKA07] Ersin Uzun, Kristiina Karvonen, and N. Asokan. Usability analysis of se-

cure pairing methods. In Sven Dietrich and Rachna Dhamija, editors, FC

2007: 11th International Conference on Financial Cryptography and Data Se-

curity, volume 4886 of Lecture Notes in Computer Science, pages 307–324,

Scarborough, Trinidad and Tobago, February 12–16, 2007. Springer,

Heidelberg, Germany.

[Vas14] Pavel Vasin. Blackcoin’s proof-of-stake protocol v2. URL:

https://blackcoin. co/blackcoin-pos-protocol-v2-whitepaper. pdf, 2014.

[VBC+16] Marie Vasek, Joseph Bonneau, Ryan Castellucci, Cameron Keith, and

Tyler Moore. The bitcoin brain drain: Examining the use and abuse of

bitcoin brain wallets. In Grossklags and Preneel [GP16], pages 609–618.

[Voe20] Zack Voell. Ethereum classic hit by third 51% attack in a

month, 2020. https://www.coindesk.com/ethereum-classic-
blockchain-subject-to-yet-another-51-attack.

[Vol18] Sergei Volotikin. Software attacks on hardware wallets. Black Hat USA

2018, 2018.

[VS13] Nicolas Van Saberhagen. Cryptonote v 2.0, 2013.

[VTM14] Marie Vasek, Micah Thornton, and Tyler Moore. Empirical analysis

of denial-of-service attacks in the bitcoin ecosystem. In Böhme et al.

[BBMS14], pages 57–71. doi:10.1007/978-3-662-44774-1_5.

[WC14] John Ross Wallrabenstein and Chris Clifton. Privacy preserving Tâ-

tonnement - A cryptographic construction of an incentive compatible

market. In Christin and Safavi-Naini [CS14], pages 399–416. doi:
10.1007/978-3-662-45472-5_26.

[Wik20] Bitcoin Wiki. How to cheaply consolidate coins to reduce miner

fees, 2020. https://en.bitcoin.it/wiki/How_to_cheaply_
consolidate_coins_to_reduce_miner_fees.

https://www.coindesk.com/ethereum-classic-blockchain-subject-to-yet-another-51-attack
https://www.coindesk.com/ethereum-classic-blockchain-subject-to-yet-another-51-attack
https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-45472-5_26
https://doi.org/10.1007/978-3-662-45472-5_26
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees

Bibliography 218

[Wil14] Zak Wilcox. Proving your bitcoin reserves, 2014.

[Wil16] Jeffrey Wilcke. The ethereum network is currently undergoing a dos at-

tack, 2016. https://blog.ethereum.org/2016/09/22/ethereum-
network-currently-undergoing-dos-attack/.

[WKCC18] KarlWüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun. PRCash:

Centrally-issued digital currency with privacy and regulation. Cryptology

ePrint Archive, Report 2018/412, 2018. https://eprint.iacr.org/
2018/412.

[WKK+16] Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.

Myers, and Shai Halevi, editors. ACM CCS 2016: 23rd Conference on

Computer and Communications Security, Vienna, Austria, October 24–28,

2016. ACM Press.

[Woo14] Gavin Wood. Ethereum yellow paper, 2014.

[Wui18] Peter Wuille. Hierarchical Deterministic Wallets. https://en.
bitcoin.it/wiki/BIP_0032, 2018. [Online; accessed 1-Sep-2018].

[Zah18] Joachim Zahnentferner. Chimeric ledgers: Translating and unifying utxo-

based and account-based cryptocurrencies. Cryptology ePrint Archive,

Report 2018/262, 2018. https://eprint.iacr.org/2018/262.

[Zen18] ZenCash. Zencash statement on double spend attack, 2018.

https://blog.zencash.com/zencash-statement-on-double-
spend-attack/.

[ZET+19] Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali,

Federico Pintore, and Massimiliano Sala, editors. FC 2018 Workshops,

volume 10958 of Lecture Notes in Computer Science, Nieuwpoort, Cu-

raçao, March 2, 2019. Springer, Heidelberg, Germany.

https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://eprint.iacr.org/2018/412
https://eprint.iacr.org/2018/412
https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/BIP_0032
https://eprint.iacr.org/2018/262
https://blog.zencash.com/zencash-statement-on-double-spend-attack/
https://blog.zencash.com/zencash-statement-on-double-spend-attack/

	 Introduction
	Motivation and Contributions
	Publications

	Background
	Cryptographic Primitives
	Cryptographic Hash Functions
	Digital Signatures
	The Universal Composability Framework

	Distributed Ledgers
	Consensus
	Reliable Broadcast
	Distributed Ledger

	Bitcoin and Blockchains
	Literature Overview
	Bitcoin Formal Models
	Proof-of-Stake Protocols
	Blockchain Incentives

	 Formalization of Hardware Wallets
	Formal Model of Hardware Wallets
	The Ideal Functionality
	The Real-World Hybrid Setting
	Security Analysis
	Product evaluation

	 Account Management in Proof-of-Stake Ledgers
	General Desiderata
	Address Malleability
	The Core-Wallet Functionality
	The Generic Core-Wallet Protocol
	Security Analysis
	Properties of the Generation Algorithms
	Security in the Sink Malleable Setting
	Security in the Fully Malleable Setting
	Attacking the Malleable Protocol in the Non-Malleable Setting

	PoS Addresses: Construction and Recovery
	Address Types and their Attributes
	Malleable Addresses
	A Posteriori Malleable Addresses
	Sink Malleable Addresses

	The Proof-of-Stake Wallet
	Payment
	Stake Pool Registration
	Delegation
	Protocol Participation
	Security in the Presence of Stake Pools
	Modes of Execution

	Discussion

	 Collective Stake Pools
	Desiderata
	Execution Model
	Weighted Threshold Digital Signatures
	Transactions, Blocks, and the Global Ledger

	UC Weighted Threshold Signature
	The Collective Stake Pool
	Hybrid Protocol Execution
	Part 1: Stake Pool Management
	Part 2: Participation in Consensus

	Security Analysis
	Incentives Analysis

	 Efficient Global State Management
	A UTxO Model
	Transaction Optimization
	Transaction Logical Operators - Ledger State Algebra
	A Transaction Optimization Framework
	Transaction Optimization Techniques
	The Transaction Optimization Problem

	State Efficiency in Bitcoin
	A State Efficient Bitcoin

	 Blockchain Nash Dynamics
	The Setting
	Network Model
	Approximate Nash Equilibrium

	Compliance Model
	Basic Notions
	Compliant Protocols

	Blockchain Protocols
	The Setting
	Utility: Rewards and Costs

	Fair Rewards
	Block-Proportional Rewards
	Bitcoin
	Proof-of-Stake

	Externalities
	Utility under Externalities
	Compliance under Externalities
	Attacks and Market Response
	Penalties

	 Macroeconomic Principles
	 Cryptocurrency Egalitarianism
	PoW vs. PoS
	A Formal Model of Crypto-Egalitarianism
	Discussion

	 Tax Applications of Programmable Money
	Desiderata
	Tax Auditable Distributed Ledger
	A Tax-Auditing Extension for Provisions

	 Conclusion
	Bibliography

